Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(21): 6735-6748, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37531314

RESUMEN

Stomatal movement can be regulated by ABA signaling through synthesis of reactive oxygen species (ROS) in guard cells. By contrast, ethylene triggers the biosynthesis of antioxidant flavonols to suppress ROS accumulation and prevent ABA-induced stomatal closure; however, the underlying mechanism remains largely unknown. In this study, we isolated and characterized the tobacco (Nicotiana tabacum) R2R3-MYB transcription factor NtMYB184, which belongs to the flavonol-specific SG7 subgroup. RNAi suppression and CRISPR/Cas9 mutation (myb184) of NtMYB184 in tobacco caused down-regulation of flavonol biosynthetic genes and decreased the concentration of flavonols in the leaves. Yeast one-hybrid assays, transactivation assays, EMSAs, and ChIP-qPCR demonstrated that NtMYB184 specifically binds to the promoters of flavonol biosynthetic genes via MYBPLANT motifs. NtMYB184 regulated flavonol biosynthesis in guard cells to modulate ROS homeostasis and stomatal aperture. ABA-induced ROS production was accompanied by the suppression of NtMYB184 and flavonol biosynthesis, which may accelerate ABA-induced stomatal closure. Furthermore, ethylene stimulated NtMYB184 expression and flavonol biosynthesis to suppress ROS accumulation and curb ABA-induced stomatal closure. In myb184, however, neither the flavonol and ROS concentrations nor the stomatal aperture varied between the ABA and ABA+ethylene treatments, indicating that NtMYB184 was indispensable for the antagonism between ethylene and ABA via regulating flavonol and ROS concentrations in the guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nicotiana/genética , Nicotiana/metabolismo , Ácido Abscísico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Estomas de Plantas/fisiología , Etilenos/metabolismo , Flavonoles/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Plant Physiol ; 187(4): 2837-2851, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618091

RESUMEN

Melatonin (MT) plays important roles in plant disease response, but the mechanisms are largely unknown. Here, we show that MT functions in stomatal immunity in Panax notoginseng and Arabidopsis thaliana. Biochemical analyses showed that MT-induced stomatal closure plays a prominent role in preventing invasion of bacteria Pseudomonas syringe pv. tomato (Pst) DC3000 via activation of mitogen-activated protein kinase (MAPK) and NADPH oxidase-mediated reactive oxygen species production in P. notoginseng. The first putative phytomelatonin receptor 1 (PMTR1) is a plasma membrane protein required for perceiving MT signaling in stomatal closure and activation of MAPK. Biochemical and genetic tests found PMTR1 is essential for flg22- and MT-induced MAPK activation in a heterotrimeric GTP-binding protein Gα subunit GPA1-independent manner. GPA1 functions in the same genetic pathways of FLS2/BAK1 (Flagellin Sensing 2/Brassinosteroid Insensitive 1-associated kinase 1)- as well as PMTR1-mediated flg22 and MT signaling in stomatal closure. The stomata in pmtr1 are insensitive to MT and flg22, but the application of MT induces stomatal closure and reduces the bacterial growth in fls2 and bak1 plants, indicating that PMTR1 might be a downstream signaling component in FLS2- and BAK1-mediated stomatal immunity. In summary, our results (i) demonstrate that phytomelatonin functions in the priming of stomatal immunity and (ii) provide insights into the phytomelatonin signaling transduction pathway.


Asunto(s)
Arabidopsis/inmunología , Melatonina/administración & dosificación , Panax notoginseng/inmunología , Inmunidad de la Planta , Proteínas de Plantas/inmunología , Estomas de Plantas/inmunología , Pseudomonas syringae/fisiología , Proteínas de Arabidopsis/inmunología
3.
J Pineal Res ; 68(3): e12640, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32064655

RESUMEN

Melatonin is a well-studied neurohormone oscillating in a 24-h cycle in vertebrates. Phytomelatonin is widespread in plant kingdom, but it remains elusive whether this newly characterized putative hormone underlies the regulation by daily rhythms. Here, we report phytomelatonin signaling, as reflected by changes in endogenous concentrations of phytomelatonin and expression of genes associated with biosynthesis of phytomelatonin (AtSNAT1, AtCOMT1, and AtASMT) and its receptor (AtPMTR1), shows 24-h oscillations in Arabidopsis. The variation of reactive oxygen species (ROS) production and scavenging and expression of ROS-related genes significantly decrease in pmtr1 and snat and increase in PMTR1-OE seedlings, indicating the rhythmicity in phytomelatonin signaling is required for maintenance of ROS dynamics. Additionally, the ROS signaling feedback influences the expression of AtSNAT1, AtCOMT1, AtASMT, and AtPMTR1, suggesting the phytomelatonin and ROS signaling are coordinately interrelated. The pmtr1 mutant plants lose diurnal stomatal closure, with stomata remaining open during daytime as well as nighttime and mutants showing more water loss and drought sensitivity when compared with the wild-type Col-0 plants. Taken together, our results suggest that PMTR1-regulated ROS signaling peaks in the afternoon and may transmit the darkness signals to trigger stomatal closure, which might be essential for high water-use efficiency and drought tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ritmo Circadiano/fisiología , Melatonina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Estomas de Plantas/fisiología , Transducción de Señal/fisiología
4.
J Plant Physiol ; 284: 153977, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062233

RESUMEN

Flavonols are well-known antioxidants that prevent stomatal closure via interfering with ROS signaling. Phytomelatonin regulates stomatal closure, but the signaling pathways are still largely unknown. Here, we investigated the role of flavonols in phytomelatonin-mediated stomatal closure in tobacco plants. The application of melatonin induced stomatal closure through NADPH oxidase-mediated ROS production. Transgenic tobacco plants overexpressing soybean GmSNAT1 (coding for serotonin N-acetyltransferase that catalyzes the penultimate step in phytomelatonin biosynthesis) had higher phytomelatonin concentration, accumulated more ROS in guard cells and were more sensitive to melatonin-induced stomatal closure than the wild-type plants, which was associated with the higher expression of PMTR1-homologous genes. Exogenous melatonin decreased flavonol concentrations in guard cells and the expression of flavonoid-related genes in wild-type and transgenic tobacco plants, and these inhibitory effects were more obvious in GmSNAT1-overexpressing plants than the wild type. However, the melatonin-mediated stomatal closure and ROS production were diminished by the application of kaempferol (a type of flavonol). Additionally, transgenic tobacco plants with increased expression of NtFLS (encoding flavonol synthase) were less sensitive to melatonin-induced stomatal closure. In conclusion, phytomelatonin hampers the biosynthesis of flavonols in guard cells, which results in high concentration of ROS and induces stomatal closure in tobacco plants.


Asunto(s)
Arabidopsis , Melatonina , Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/metabolismo , Melatonina/metabolismo , Estomas de Plantas/fisiología , Flavonoles/metabolismo
5.
Neuromuscul Disord ; 33(9): 81-89, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37620213

RESUMEN

Neutral lipid-storage disease with myopathy (NLSDM) is an autosomal recessive neuromuscular disorder caused by mutations in PNPLA2, and the average age at onset is 30 years. To date, only eight patients with childhood-onset NLSDM have been reported in detail. We investigated 3 unreported patients with NLSDM detected in childhood and reviewed 8 childhood-onset and 82 adult-onset patients with NLSDM documented in the literature. In the childhood-onset cohort, NLSDM presented initially as asymptomatic or paucisymptomatic hyperCKemia in 6/11 patients, and follow-up data showed onset of muscle weakness in 6/11 childhood-onset patients. In the adult-onset cohort, 95.1% (78/82) of patients showed muscle weakness. Cardiac involvement developed in 6/11 childhood-onset patients. Hepatomegaly was observed in 3/11 childhood-onset patients. Serum creatine kinase levels were elevated greater than five-fold of the upper limit of normal (ULN) in most childhood-onset patients and were elevated to less than ten-fold of the ULN in most adult-onset patients. Peripheral blood smears and muscle biopsies showed cytoplasmic lipid droplets in leukocytes and myocytes. NLSDM can present in children with asymptomatic or paucisymptomatic hyperCKemia before the onset of muscle weakness. The presence of lipid droplets in leucocytes (Jordans' anomaly) aids in diagnosing and confirming the pathogenicity of PNPLA2 variants of uncertain significance. There were no clear genotype-phenotype correlations in patients with NLSDM.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Enfermedades Musculares , Adulto , Niño , Humanos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Debilidad Muscular , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética
6.
J Plant Physiol ; 263: 153466, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34216845

RESUMEN

Panax notoginseng (Bruk.) FH Chen is a valuable traditional herb in China, with saponins being the main medicinal components in its roots. However, leaf diseases are a major factor limiting growth and production of P. notoginseng. Melatonin is a ubiquitous signaling molecule associated with abiotic stress resistance. In this study, we investigated the role of melatonin in leaf disease resistance of P. notoginseng in field conditions. Additionally, saponin concentrations were analyzed to evaluate the suitability of melatonin use in agricultural practice. Our results showed that exogenous application of melatonin promoted the endogenous phytomelatonin accumulation via upregulation of genes involved in its biosynthesis. The application of 10 µM melatonin decreased the incidence of leaf diseases (gray mold, round spot, and black spot) by about 40% compared with the solvent control, which might have been due to the increased expression of genes associated with immunity and disease resistance. Furthermore, concentrations of saponins and expression of their biosynthesis-related genes were significantly increased by melatonin. Taken together, the data presented here suggested that melatonin could be used in agricultural management of P. notoginseng because it increased leaf disease resistance and biosynthesis of saponins.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Melatonina/metabolismo , Panax notoginseng/crecimiento & desarrollo , Panax notoginseng/metabolismo , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Saponinas/biosíntesis , China , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo
7.
J Plant Physiol ; 248: 153131, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32203778

RESUMEN

Panax notoginseng is a traditional medicinal herb in China. However, the high capacity of its roots to accumulate cadmium (Cd) poses a potential risk to human health. Our previous study showed that nitrate reductase (NR)-dependent nitric oxide (NO) production promoted Cd accumulation in P. notoginseng root cell walls. In this study, the role of Mg in the regulation of NO production and Cd accumulation in P. notoginseng roots was characterized. Exposure of P. notoginseng roots to increasing concentrations of Cd resulted in a linear increase in NO production. The application of 2 mM Mg for 24 h significantly alleviated Cd-induced NO production and Cd accumulation in roots, which coincided with a significant decrease in the NR activity. Western analysis suggested that Mg increased the interaction between the 14-3-3 protein and NR, which might have been a reason for the Mg-mediated decrease in NR activity and NO production under Cd stress. These results suggested that Mg-mediated alleviation of Cd-induced NO production and Cd accumulation is achieved by enhancement of the interaction between the 14-3-3 protein and NR in P. notoginseng roots.


Asunto(s)
Cadmio/metabolismo , Magnesio/metabolismo , Óxido Nítrico/metabolismo , Panax notoginseng/metabolismo , Contaminantes del Suelo/metabolismo , Bioacumulación , Magnesio/administración & dosificación , Raíces de Plantas , Plantas Medicinales/metabolismo
8.
Artif Cells Nanomed Biotechnol ; 47(1): 2746-2753, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31282213

RESUMEN

Puerarin has been reported to be useful in protection against hypoxia-induced injury. In our current study, we attempted to explore the protective effects of puerarin against hypoxia-caused damages in neural stem cells (NSCs). Additionally, the relative molecular underpinning studies preliminarily proceeded. NSCs were pre-incubated with puerarin before the hypoxic stimulus. MicroRNA-214 (miR-214) inhibitor was transfected into NSCs. Subsequently, the viability of NSCs was assessed by CCK-8 assay. Flow cytometry was employed to detect apoptotic cells after staining. qRT-PCR was performed to quantify miR-214. Western blot was applied for analyzing the expression of apoptosis-relative proteins and regulators. We found that puerarin alleviated hypoxia-induced apoptosis and maintained cell viability. Hypoxia-evoked up-regulation of miR-214 was further enhanced by puerarin. By contrast, miR-214-deficient NSCs showed the reduction in cell viability and the facilitation in apoptosis progress after pre-treatment with puerarin and stimulation in a hypoxia circumstance. Additionally, puerarin restored the phosphorylation of relative regulators, which was originally blunted by hypoxia. However, puerarin did not evidently restore the phosphorylation for response to hypoxia in miR-214-silenced NSCs. In conclusion, puerarin might be applied as a novel agent to ameliorate hypoxia-evoked damages in NSCs. Molecularly, miR-214 might be implicated in the protective roles of puerarin.


Asunto(s)
Isoflavonas/farmacología , MicroARNs/genética , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citoprotección/efectos de los fármacos , Citoprotección/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células-Madre Neurales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA