Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8015): 59-63, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750357

RESUMEN

Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

2.
Phys Rev Lett ; 132(23): 232502, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905669

RESUMEN

We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors using high-fidelity chiral interactions were well out of reach using existing computational methods. In this Letter, we solve the problem using a computational approach called the rank-one operator (RO) method. The RO method is a general technique with broad applications to simulations of fermionic many-body systems. It solves the problem of exponential scaling of computational effort when using perturbation theory for higher-body operators and higher-order corrections. Using the RO method, we compute the vector and axial static structure factors for hot neutron matter as a function of temperature and density. The ab initio lattice results are in good agreement with virial expansion calculations at low densities but are more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations.

3.
Phys Rev Lett ; 132(16): 162502, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701465

RESUMEN

The nuclear charge radius of ^{32}Si was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of ^{32}Si completes the radii of the mirror pair ^{32}Ar-^{32}Si, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state. Our result suggests L≤60 MeV, which agrees with complementary observables.

4.
Phys Rev Lett ; 128(24): 242501, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35776463

RESUMEN

While first order perturbation theory is routinely used in quantum Monte Carlo (QMC) calculations, higher-order terms present significant numerical challenges. We present a new approach for computing perturbative corrections in projection QMC calculations. We demonstrate the method by computing nuclear ground state energies up to second order for a realistic chiral interaction. We calculate the binding energies of several light nuclei up to ^{16}O by expanding the Hamiltonian around the Wigner SU(4) limit and find good agreement with data. In contrast to the natural ordering of the perturbative series, we find remarkably large second-order energy corrections. This occurs because the perturbing interactions break the symmetries of the unperturbed Hamiltonian. Our method is free from the sign problem and can be applied to QMC calculations for many-body systems in nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA