Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728666

RESUMEN

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cruzamiento , Proteínas y Péptidos de Choque por Frío/genética , Frío , Retículo Endoplásmico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Oryza/citología , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Alineación de Secuencia
2.
J Immunol ; 210(2): 180-190, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36458991

RESUMEN

Acute pancreatitis (AP) can be complicated by inflammatory disorders of remote organs, such as lung injury, in which Jumonji domain-containing protein 3 (JMJD3) plays a vital role in proinflammatory responses. Currently, we found that JMJD3 expression was upregulated in the pancreas and lung in an AP male mouse model, which was also confirmed in AP patients. Further experiments revealed that the upregulation of JMJD3 and proinflammatory effects were possibly exerted by mitochondrial DNA (mtDNA) or oxidized-mtDNA from tissue injury caused by AP. The release of mtDNA and oxidized-mtDNA contributed to the infiltration of inflammatory monocytes in lung injury through the stimulator of IFN genes (STING)/TLR9-NF-κB-JMJD3-TNF-α pathway. The inhibition of JMJD3 or utilization of Jmjd3-cKO mice significantly alleviated pulmonary inflammation induced by AP. Blocking mtDNA oxidation or knocking down the TLR9/STING pathway effectively alleviated inflammation. Therefore, inhibition of JMJD3 or STING/TLR9 pathway blockage might be a potential therapeutic strategy to treat AP and the associated lung injury.


Asunto(s)
Lesión Pulmonar , Pancreatitis , Masculino , Ratones , Animales , Receptor Toll-Like 9/metabolismo , Enfermedad Aguda , FN-kappa B/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
3.
Exp Cell Res ; 441(1): 114168, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004201

RESUMEN

Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition. This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.


Asunto(s)
Adipogénesis , Exosomas , MicroARNs , Adipogénesis/genética , Exosomas/metabolismo , Exosomas/genética , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Adipocitos/metabolismo
4.
Cell Mol Life Sci ; 81(1): 273, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900294

RESUMEN

Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.


Asunto(s)
Aprendizaje por Laberinto , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear , Memoria Espacial , Animales , Memoria Espacial/fisiología , Ratones , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Aprendizaje por Laberinto/fisiología , Masculino , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Serina-Treonina Quinasas , Proteínas Inmediatas-Precoces
5.
Genomics ; 116(5): 110903, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069233

RESUMEN

MicroRNAs (miRNAs) are widely involved in various lipogenic processes, including adipocyte proliferation and differentiation, lipid droplet formation, and adipocyte-specific gene activation. The present study aimed to investigate the gene expression profiles of bovine preadipocytes under high miR-10167-3p expression using the RNA-seq technique and to verify the functions of its downstream target genes on the proliferation and differentiation of bovine preadipocytes. First, RNA-seq identified 573 differentially expressed genes (DEGs), of which 243 were downregulated and 330 were upregulated. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 15.19% of the DEGs were enriched in pathways related to lipid metabolism. Meanwhile, dual-luciferase reporter gene assay verified the target-binding relationship between miR-10167-3p and TCF7L1. The function of TCF7L1 was assessed using several experiments in adipocytes with high TCF7L1 expression and RNA interference. The mRNA and protein expression of proliferation, differentiation, and apoptosis marker genes were detected using qPCR and western blot, respectively; lipid droplet synthesis was detected using oil red O, Nile red, and bodipy staining; adipocyte proliferation was detected by EdU; and apoptosis was detected using flow cytometry. The results revealed that TCF7L1 overexpression inhibited bovine preadipocyte differentiation and apoptosis and promoted their proliferation, with opposite results obtained with its RNA interference. These results may provide a reference for the subsequent investigation of the molecular mechanism of bovine fat deposition.

6.
BMC Genomics ; 25(1): 737, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080526

RESUMEN

OBJECTIVES: Serum/glucocorticoid-inducible kinase 1 (SGK1) gene encodes a serine/threonine protein kinase that plays an essential role in cellular stress response and regulation of multiple metabolic processes. However, its role in bovine adipogenesis remains unknown. In this study, we aimed to clarify the role of SGK1 in bovine lipid accumulation and improvement of meat quality. METHODS: Preadipocytes were induced to differentiation to detect the temporal expression pattern of SGK1. Heart, liver, lung, spleen, kidney, muscle and fat tissues were collected to detect its tissue expression profile. Recombinant adenovirus and the lentivirus were packaged for overexpression and knockdown. Oil Red O staining, quantitative real-time PCR, Western blot analysis, Yeast two-hybrid assay, luciferase assay and RNA-seq were performed to study the regulatory mechanism of SGK1. RESULTS: SGK1 showed significantly higher expression in adipose and significantly induced expression in differentiated adipocytes. Furthermore, overexpression of SGK1 greatly promoted adipogenesis and inhibited proliferation, which could be shown by the remarkable increasement of lipid droplet, and the expression levels of adipogenic marker genes and cell cycle-related genes. Inversely, its knockdown inhibited adipogenesis and facilitated proliferation. Mechanistically, SGK1 regulates the phosphorylation and expression of two critical proteins of FoxO family, FOXO1/FOXO3. Importantly, SGK1 attenuates the transcriptional repression role of FOXO1 for PPARγ via phosphorylating the site S256, then promoting the bovine fat deposition. CONCLUSIONS: SGK1 is a required epigenetic regulatory factor for bovine preadipocyte proliferation and differentiation, which contributes to a better understanding of fat deposition and meat quality improvement in cattle.


Asunto(s)
Adipocitos , Adipogénesis , Proteína Forkhead Box O1 , Proteínas Inmediatas-Precoces , Metabolismo de los Lípidos , Proteínas Serina-Treonina Quinasas , Animales , Bovinos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Adipocitos/metabolismo , Adipocitos/citología , Adipogénesis/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica
7.
BMC Genomics ; 25(1): 882, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300336

RESUMEN

MicroRNA (miRNA) is a type of endogenous non-coding small RNA, which is abundant in living organisms. miRNAs play an important role in regulating gene expression and myriad cellular processes by binding to target messenger RNAs through complementary base pairing, and cross-species regulation mammalian cells by plant-derived xeno-miRNAs has been described. Here, we examined the miRNA species in two alfalfa (Medicago sativa, lucerne) cultivars commonly grown in Ningxia, China: cv. Zhongmu 1 and cv. Xinyan 52. Both cultivars have good salt and drought resistance. We found that the miRNA profiles were similar between the cultivars, with a slightly higher number of miRNAs present in the newer cv. Xinyan 52, which may contribute to its improved salt and drought tolerance. miRNAs were stable during drying, and some miRNAs were increased in dry versus fresh alfalfa, suggesting some miRNAs may be upregulated during drying. Alfalfa-derived miRNAs could be detected in exosomes from serum and whey collected from dairy cows, confirming the ability of the exogenous miRNAs (xeno-miRNAs) to enter the circulation and reach the mammary epithelium. In vitro studies confirmed that overexpression of mtr-miR156a could downregulate expression of Phosphatase 2 Regulatory Subunit B'gamma ( PPP2R5D) and Phosphoinositide-3-kinase Regulatory Subunit 2 (PIK3R2). Overexpression of mtr-miR156a also modulated PI3K-AKT-mTOR signaling as well as the casein content of milk produced by bovine mammary epithelial cells. Based on the known roles of PPP2R5D and PIK3R2 in regulating the PI3K-AKT-mTOR pathway as well as the effect of PI3K-AKT-mTOR on milk protein content, our findings implicate alfalfa-derived miR156a as a new cross-species regulator of milk quality in dairy cows.


Asunto(s)
Exosomas , Medicago sativa , MicroARNs , Leche , Animales , Bovinos , MicroARNs/genética , MicroARNs/metabolismo , Leche/metabolismo , Leche/química , Femenino , Exosomas/metabolismo , Exosomas/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Proteínas de la Leche/metabolismo , Proteínas de la Leche/genética , Células Epiteliales/metabolismo , Transducción de Señal
8.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605318

RESUMEN

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Asunto(s)
Adipocitos , Genes Homeobox , Animales , Bovinos , Adipocitos/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Factores de Transcripción/metabolismo , Apoptosis/genética , ARN Mensajero/metabolismo , Adipogénesis/genética
9.
J Cell Biochem ; 125(2): e30512, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38098251

RESUMEN

Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , ARN Circular/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Motivación , ARN/genética
10.
Anal Chem ; 96(28): 11498-11507, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946253

RESUMEN

The determination of pH values is crucial in various fields, such as analytical chemistry, medical diagnostics, and biochemical research. pH test strips, renowned for their convenience and cost-effectiveness, are commonly utilized for pH qualitative estimation. Recently, quantitative methods for determining pH values using pH test strips have been developed. However, these methods can be prone to errors due to environmental factors, such as lighting conditions, which affect the imaging quality of the pH test strips. To address these challenges, we developed an innovative approach that combines machine learning techniques with pH test strips for the quantitative determination of pH values. Our method involves extracting artificial features from the pH test strip images and combining them across multiple dimensions for comprehensive analysis. To ensure optimal feature selection, we developed a feature selection strategy based on SHAP importance. This strategy helps in identifying the most relevant features that contribute to accurate pH prediction. Furthermore, we integrated multiple machine learning algorithms, employing a robust stacking fusion strategy to establish a highly reliable pH value prediction model. Our proposed method automates the determination of pH values through pH test strips, effectively overcoming the limitations associated with environmental lighting interference. Experimental results demonstrate that this method is convenient, effective, and highly reliable for the determination of pH values.

11.
Biochem Biophys Res Commun ; 733: 150696, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39288700

RESUMEN

Major depressive disorder (MDD) is a psychiatric disorder characterized by depressed mood, behavioral despair and anhedonia. Demyelination in specific brain regions underlies the pathology of MDD, raising the alleviating demyelination as a potential strategy for MDD therapy. Nervonic acid (NA) has the potential to improve brain demyelination, offering benefits for various neurological disorders. However, its effects on depression remain undetermined. Mice were subjected to 14 days of chronic restraint stress (CRS) to induce depression-like behaviors, and were injected with NA (70 mg/kg) daily. The administration of NA significantly improved depressive-like behaviors in CRS mice. CRS led to significant demyelination in the medial prefrontal cortex (mPFC), which were reversed by NA treatment. In addition, NA ameliorated the upregulation of inflammatory cytokines and downregulation of brain-derived neurotrophic factor, improved the alternations in axonal spines observed in the mPFC of CRS mice. Our results highlighted the potential of NA as an antidepressant, with its benefits likely attributed to its effects in alleviating demyelination in the mPFC.

12.
J Autoimmun ; 143: 103162, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142533

RESUMEN

Th17-cells play a key role in the pathogenesis of autoimmune hepatitis (AIH). Dysregulation of Th17-cells in AIH is linked to defective response to aryl-hydrocarbon-receptor (AhR) activation. AhR modulates adaptive immunity and is regulated by aryl-hydrocarbon-receptor-repressor (AHRR), which inhibits AhR transcriptional activity. In this study, we investigated whether defective Th17-cell response to AhR derives from aberrant AHRR regulation in AIH. Th17-cells, obtained from the peripheral blood of AIH patients (n = 30) and healthy controls (n = 30) were exposed to AhR endogenous ligands, and their response assessed in the absence or presence of AHRR silencing. Therapeutic effects of AHRR blockade were tested in a model of Concanavalin-A (Con-A)-induced liver injury in humanized mice. AHRR was markedly upregulated in AIH Th17-cells, following exposure to l-kynurenine, an AhR endogenous ligand. In patients, silencing of AHRR boosted Th17-cell response to l-kynurenine, as reflected by increased levels of CYP1A1, the main gene controlled by AhR; and decreased IL17A expression. Blockade of AHRR limited the differentiation of naïve CD4-cells into Th17 lymphocytes; and modulated Th17-cell metabolic profile by increasing the levels of uridine via ATP depletion or pyrimidine salvage. Treatment with 2'-deoxy-2'-fluoro-d-arabinonucleic acid (FANA) oligonucleotides to silence human AHRR in vivo, reduced ALT levels, attenuated lymphocyte infiltration on histology, and heightened frequencies of regulatory immune subsets in NOD/scid/gamma mice, reconstituted with human CD4 cells, and exposed to Con-A. In conclusion, blockade of AHRR in AIH restores Th17-cell response to AHR, and limits Th17-cell differentiation through generation of uridine. In vivo, silencing of AHRR attenuates liver damage in NOD/scid/gamma mice. Blockade of AHRR might therefore represent a novel therapeutic strategy to modulate effector Th17-cell immunity and restore homeostasis in AIH.


Asunto(s)
Hepatitis Autoinmune , Receptores de Hidrocarburo de Aril , Animales , Humanos , Ratones , Hepatitis Autoinmune/genética , Hidrocarburos , Quinurenina , Ratones Endogámicos NOD , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Represoras/genética , Células Th17/metabolismo , Uridina
13.
Langmuir ; 40(1): 380-388, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153039

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) has emerged as a highly sensitive trace detection technique in recent decades, yet its exceptional performance remains elusive in semiconductor materials due to the intricate and ambiguous nature of the SERS mechanism. Herein, we have synthesized MoS2 nanoflowers (NFs) decorated with Au nanoparticles (NPs) by hydrothermal and redox methods to explore the size-dependence SERS effect. This strategy enhances the interactions between the substrate and molecules, resulting in exceptional uniformity and reproducibility. Compared to the unadorned Au nanoparticles (NPs), the decoration of Au NPs induces an n-type effect on MoS2, resulting in a significant enhancement of the SERS effect. This augmentation empowers MoS2 to achieve a low limit of detection concentration of 2.1 × 10-9 M for crystal violet (CV) molecules and the enhancement factor (EF) is about 8.52 × 106. The time-stability for a duration of 20 days was carried out, revealing that the Raman intensity of CV on the MoS2/Au-6 substrate only exhibited a reduction of 24.36% after undergoing aging for 20 days. The proposed mechanism for SERS primarily stems from the synergistic interplay among the resonance of CV molecules, local surface plasma resonance (LSPR) of Au NPs, and the dual-step charge transfer enhancement. This research offers comprehensive insights into SERS enhancement and provides guidance for the molecular design of highly sensitive SERS systems.

14.
Mol Cell Biochem ; 479(4): 779-791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37178375

RESUMEN

Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Exosomas , Trasplante de Células Madre Mesenquimatosas , Humanos , Enfermedades Cardiovasculares/metabolismo , Trasplante de Células Madre , Aterosclerosis/terapia , Aterosclerosis/metabolismo , Exosomas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
15.
Mol Cell Biochem ; 479(3): 643-652, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37148505

RESUMEN

The adipose-derived stem cells (ASCs) are a valuable resource for regenerative medicine and essential materials for research in fat deposition. However, the isolation procedure of ASCs has not been standardized and needs to be harmonized; differences in proliferation and adipogenic differentiation of ASCs obtained from different fat depots have not been well characterized. In the present study, we compared the efficiency of ASCs isolation by enzymatic treatment and explant culture methods and the proliferation ability and adipogenic differentiation potential of ASCs isolated from subcutaneous and visceral fat depots. The explant culture method was simple and with no need for expensive enzymes while the enzymatic treatment method was complex, time consuming and costly. By the explant culture method, a larger number of ASCs were isolated from subcutaneous and visceral fat depots. By contrast, fewer ASCs were obtained by the enzymatic treatment method, especially from visceral adipose. ASCs isolated by the explant culture method performed well in cell proliferation and adipogenic differentiation, though they were slightly lower than those by the enzymatic treatment method. ASCs isolated from visceral depot demonstrated higher proliferation ability and adipogenic differentiation potential. In total, the explant culture method is simpler, more efficient, and lower cost than the enzymatic treatment method for ASCs isolation; compared with visceral adipose, subcutaneous adipose is easier to isolate ASCs; however, the visceral ASCs are superior to subcutaneous ASCs in proliferation and adipogenic differentiation.


Asunto(s)
Adipogénesis , Grasa Subcutánea , Animales , Bovinos , Diferenciación Celular , Células Madre , Proliferación Celular , Tejido Adiposo , Células Cultivadas
16.
Mol Cell Biochem ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652214

RESUMEN

Chronic liver damage (CLD) encompasses a spectrum of conditions and poses a significant global health challenge, affecting millions of individuals. Currently, there is a deficiency of clinically validated therapeutics with minimal side effects. Emerging evidence underscores the significant potential of extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) as a promising therapeutic method for CLD. This study aimed to evaluate the influence of BMSC-EVs containing microRNA-136-5p (BMSC-EVs-miR-136-5p) on macrophage polarization during chronic liver injury and elucidate the mechanisms associated with the GNAS/PI3K/ERK/STAT3 axis. Surface markers of BMSCs were detected via Immunofluorescent Staining. Subsequently, EVs were harvested from the BMSC culture medium. In vivo fluorescence imaging was employed to locate the BMSC-EVs. Additionally, fluorescence microscopy was used to visualize the uptake of DIR-labeled BMSC-EVs by RAW264.7 cells. Various methods were employed to assess the impact of BMSC-EVs on the expression levels of inflammatory factors (IL-1ß, IL-6, IL-10, and TNF-α), M1/M2 macrophage markers (iNOS and Arg-1), and members of inflammation-related signaling pathways (GNAS, PI3K, ERK, and STAT3) in RAW264.7 cells co-cultured with BMSC-EVs. Loss-of-function approaches targeting miR-136-5p in RAW264.7 cells were subsequently utilized to validate the role of BMSC-EVs-miR-136-5p. The Luciferase Reporter Assay indicates that GNAS was identified to be a target of miR-136-5p, and miR-136-5p demonstrating increased within BMSC-EVs compared to Raw264.7-EVs. BMSC-EVs-miR-136-5p mitigated CCl4-induced liver inflammation and improved liver function by Suppressing the GNAS/STAT3 Signaling. Notably, miR-136-5p suppressed lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. BMSC-EVs-miR-136-5p alleviates CLD by activating M2 polarization through the GNAS-mediated PI3K/ERK/STAT3 axis. Accordingly, the members of this axis may serve as therapeutic targets.

17.
Liver Int ; 44(8): 1900-1911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38588014

RESUMEN

BACKGROUND AND AIMS: Acute liver failure is a multisystem disorder with a high mortality and frequent need for emergency liver transplantation. Following massive innate immune system activation, soluble markers of macrophage activation are released during liver damage and their association with disease severity and prognosis requires exploration. METHODS: Patients ALF from the United States Acute Liver Failure Study Group (USALFSG, n = 224) and King's College Hospital (n = 40) together with healthy controls (HC, n = 50) were recruited. Serum from early (Days 1-3) and late (>Day 3) time points were analysed for MAMs by enzyme-linked immunosorbent assay correlated to markers of illness severity and 21-day spontaneous survival. Surface expression phenotyping was performed via Flow Cytometry on CD14+ monocytes. RESULTS: All MAMs serum concentrations were significantly higher in ALF compared to controls (p < .0001). sCD206 concentration was higher in early and late stages of the disease in patients with bacteraemia (p = .002) and infection in general (p = .006). In MELD-adjusted multivariate modelling, sCD206 and sCD163 were independently associated with mortality. CD14+ monocyte expression of CD206 (p < .001) was higher in patients with ALF compared with controls and correlated with SOFA score (p = .018). sCD206 was independently validated as a predictor of infection in an external cohort. CONCLUSIONS: sCD206 is increased in serum of ALF patients with infections and poor outcome and is upregulated on CD14+ monocytes. Later measurements of sCD163 and sCD206 during the evolution of ALF have potential as mechanistic predictors of mortality. sCD206 should be explored as a biomarker of sepsis and mortality in ALF.


Asunto(s)
Antígenos de Diferenciación Mielomonocítica , Biomarcadores , Fallo Hepático Agudo , Activación de Macrófagos , Receptores de Superficie Celular , Humanos , Fallo Hepático Agudo/mortalidad , Fallo Hepático Agudo/sangre , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Adulto , Receptores de Superficie Celular/sangre , Estudios de Casos y Controles , Antígenos de Diferenciación Mielomonocítica/sangre , Antígenos CD/sangre , Índice de Severidad de la Enfermedad , Receptores de Lipopolisacáridos/sangre , Pronóstico , Lectinas Tipo C/sangre , Monocitos , Receptor de Manosa , Ensayo de Inmunoadsorción Enzimática , Lectinas de Unión a Manosa/sangre , Estados Unidos/epidemiología , Análisis Multivariante , Citometría de Flujo , Anciano
18.
J Org Chem ; 89(15): 11078-11082, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39014934

RESUMEN

This study describes the synthesis of the 4-azafluorenone core in a single operation using readily available starting materials. Condensation of an amidrazone with ninhydrin intercepts an intermediate 1,2,4-triazine derivative, which engages norbornadiene in a merged [4 + 2]/bis-retro[4 + 2] sequence to deliver the azafluorenone core. The tricyclic core established in this manner was elaborated to onychine, the simplest natural product in the 4-azafluorenone alkaloid family.

19.
Bioorg Med Chem Lett ; 104: 129708, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38521176

RESUMEN

Guaianolide dimers represent a unique class of natural products with anticancer activities, but their low content in plants has limited in-depth pharmacological studies. Lavandiolide I is a guaianolide dimer isolated from Artemisia species, and had been synthesized on a ten-gram scale in four steps with 60 % overall yield, which showed potent antihepatoma activity on the HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values of 12.1, 18.4, and 17.6 µM, respectively. To explore more active dimers, 33 lavandiolide I derivatives were designed, synthesized, and evaluated for their inhibitory activity on human hepatoma cell lines. Among them, 10 derivatives were more active than lavandiolide I and sorafenib on the three cell lines. The primary structure-activity relationship concluded that the introduction of aldehyde, ester, azide, amide, carbamate and urea functional groups at C-14' of the guaianolide dimer significantly enhanced the antihepatoma activity. Among these compounds, derivatives 25, 27, and 33 enhanced antihepatoma activity more than 1.2-5.8 folds than that of lavandiolide I, and demonstrated low toxicity to the human liver cell lines (THLE-2) and good safety profiles with selective index ranging from 1.3 to 3.4, while lavandiolide I was more toxic to THLE-2 cells. This work provides new insights into enhancing the antihepatoma efficacy and reducing the toxicity of sesquiterpenoid dimers.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sesquiterpenos de Guayano , Humanos , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular , Neoplasias Hepáticas/tratamiento farmacológico , Estructura Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Sesquiterpenos de Guayano/síntesis química , Sesquiterpenos de Guayano/química , Sesquiterpenos de Guayano/farmacología
20.
Nanotechnology ; 35(23)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38417160

RESUMEN

Two emitters can be entangled by manipulating them through optical fields within a photonic cavity. However, maintaining entanglement for a long time is challenging due to the decoherence of the entangled qubits, primarily caused by cavity loss and atomic decay. Here, we found the entangled dark state between two emitters mediated by a dielectric cavity within epsilon-near-zero (ENZ) materials, ensuring entanglement maintenance over an extended period. To obtain the entangled dark state, we derived an effective model with degenerate mode modulation. In the dielectric cavities within ENZ materials, the decay rate of emitters can be regarded as 0, which is the key to achieving the entangled dark state. Meanwhile, the dark state immune to cavity loss exists when two emitters are in symmetric positions in the dielectric cavity. Additionally, by adjusting the emitters to specific asymmetric positions, it is possible to achieve transient entanglement with higher concurrence. By overcoming the decoherence of the entangled qubits, this study demonstrates stable, long-term entanglement with ENZ materials, holding significant importance for applications such as nanodevice design for quantum communication and quantum information processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA