Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glob Chang Biol ; 22(12): 3927-3936, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27396719

RESUMEN

The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Océanos y Mares , Cadena Alimentaria , Actividades Humanas , Humanos
2.
Heliyon ; 10(3): e25218, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322902

RESUMEN

Climate change is a global problem that causes severe local changes to marine biota, ecosystem functioning, and ecosystem services. The Limfjorden is a shallow, eutrophic estuary influenced by episodic summer hypoxia with an important mussel fishery and suspended mussel culture industry. Three future climate change scenarios ranging from low greenhouse gas emissions (SSP1-2.6), to intermediate (SSP2-4.5) and very high emissions (SSP5-8.5) were combined with nutrient load reductions according to the National Water Plans to investigate potential impacts on natural benthic mussel populations and suspended mussel culture for the two periods 2051-2060 and 2090-2099, relative to a reference period from 2009 to 2018. The FlexSem model combined 3D hydrodynamics with a pelagic biogeochemical model, a sediment-benthos model, and a dynamic energy budget - farm scale model for mussel culture. Model results showed that the Limfjorden was sensitive to climate change impacts with the strongest responses of physics and water quality in the worst case SSP5-8.5 scenario with no nutrient reductions. In the two low emissions scenarios, expected improvements of bottom oxygen and Chlorophyll a concentrations due to reduced nutrient loads were counteracted by climate change impacts on water physics (warming, freshening, stronger stratification). Hence, higher nutrient reductions in the Water Plans would be needed to reach a good ecological status under the influence of climate change. Suspended mussel culture was intensified in all scenarios showing a high potential harvest, whereas the benthic mussels suffered from reduced food supply and hypoxia. Provided the environmental changes and trends in social demands, in the future, it is likely that suspended mussel cultivation will become the primary source of mussels for the industry. Model scenarios can be used to inform managers, mussel farmers, fishermen, and the local population on potential future changes in bivalve harvesting and ecosystem health, and to find solutions to mitigate climate change impacts.

3.
Sci Total Environ ; 888: 164168, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37201811

RESUMEN

Mussel mitigation culture is increasingly recognized as a tool to extract nutrients from eutrophic systems by harvesting mussel biomass and nutrients contained therein. The net effect of mussel production on the nutrient cycling in the ecosystem is, however, not straightforward due to the interaction with physical- and biogeochemical processes regulating ecosystem functioning. The aim of the present study was to evaluate the potential of using mussel culture as a tool to mitigate eutrophication at two contrasting sites: a semi-enclosed fjord and a coastal bay. We applied a 3D coupled hydrodynamic-biogeochemical-sediment model combined with a mussel eco-physiological model. The model was validated against monitoring data and research field data on mussel growth, sediment impacts, and particle depletion from a pilot mussel farm in the study area. Model scenarios with intensified mussel farming in the fjord and/or the bay were conducted. The results showed that mussel mitigation culture still has a high net N-extraction when including ecosystem effects, such as changes in biodeposition, nutrient retention, denitrification, and sediment nutrient fluxes in the model. Mussel farms located in the fjord were more effective in directly addressing excess nutrients and improving water quality due to the relative vicinity to primary nutrient sources (riparian) and physical characteristics of the fjord system. The results will be important to consider in other systems concerning site selection, development of bivalve aquaculture, and associated sampling strategies for monitoring the farming impacts.


Asunto(s)
Bivalvos , Ecosistema , Animales , Acuicultura/métodos , Eutrofización , Nutrientes
4.
Mar Pollut Bull ; 188: 114621, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689874

RESUMEN

Seasonal deoxygenation of coastal waters has been observed with increasing frequency around the world, with consequences for ecosystem functioning and continued benthic capacity to buffer hypoxia. Here, we present a hydrodynamical-ecological model study of the Limfjord in Denmark, an example of a semi-enclosed water body affected by recurring seasonal deoxygenation. Applying observations and model results, we show that water temperature, combined with wind strength and direction are the most important controllers of short-term interannual variability of bottom oxygen, while ventilation through episodic water inflow from the North Sea and local stratification create a spatial decoupling of deoxygenation. Nutrient load to the fjord drives sustained high biological productivity, but does not affect the interannual variability to the same degree. However, high biological turnover rates likely push the system closer towards a deoxygenated state, making the fjord more sensitive to future changes in temperature, wind and ventilation by reducing the buffer capacity of the sediments.


Asunto(s)
Ecosistema , Estuarios , Humanos , Agua , Oxígeno/análisis , Hipoxia
5.
Mar Environ Res ; 191: 106111, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573739

RESUMEN

The introduction-rate of non-indigenous species (NIS) to coastal water bodies has accelerated over the last century. We present a model study assessing the fate of NIS released in likely point sources of the Danish Wadden Sea. We show that NIS-particles released in the deep North Sea are generally transported away from the Wadden Sea, while those released in the coastal North Sea and the Wadden Sea show large variability in track pattern and settlement location. Consequently, the introduction of NIS from ships entering the port of Esbjerg pose a threat to the Wadden Sea through primary and secondary spreading, while transport of species from sources in the south likely causes a slow and steady settling of NIS in the Wadden Sea and coastal North Sea. The study points to the importance of enforcing an efficient monitoring system to ensure early detection of changes to the species composition of the Wadden Sea.

6.
Mar Pollut Bull ; 191: 114968, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37121189

RESUMEN

A rapid increase in population size along with expansion in hotel investment have been identified as key drivers of marine pollution in Zanzibar coastal waters. A validated high-resolution hydrodynamic tracer model was used to estimate the dispersal and impact range of pollutants from the main hotel areas along the western coastline of Unguja Island. The model showed the highest impact of pollutants from land during the northeast monsoon season due to the weakening of the main current. Marine protected areas with short distances to hotel areas and weak tidal currents were more likely to be impacted by pollutants from land than the more remote areas with higher flushing in agreement with water quality and seagrass health measurements. Cumulative effects of pollutants instead of single sources are important to consider for integrated wastewater treatment plans and management strategies to reduce pollution for the protection of biodiversity and guide future monitoring.


Asunto(s)
Arrecifes de Coral , Contaminantes Ambientales , Ecosistema , Hidrodinámica , Tanzanía
7.
Mar Environ Res ; 179: 105690, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35853313

RESUMEN

The North Sea and the Baltic Sea, including Danish coastal waters, have experienced a drastic decline in eelgrass Zostera marina coverage during the past century. Around 1900, eelgrass meadows covered about 6700 km2 of Danish coastal waters while the current potential distribution area is only about one third of this. In some areas, the potential distribution area is far from realized, and restoration efforts are needed to assist recovery. Such efforts are challenging, and resource-demanding and careful site selection is, therefore, important. In the present study, we aim to identify the connectivity of eelgrass populations as a basis for guiding site selection for restoration. We developed a coupled biophysical model to study eelgrass dispersal in the Kattegat. Partly submerged particles simulated the dispersal of reproductive eelgrass shoots containing seeds during the flowering season July-September. We then used network analysis to identify the potential connectivity between populations. We evaluated connectivity based on In-strength, Betweenness and Eigenvector centrality metrics and identified key areas in the Kattegat such as the central part of Aalborg Bay, to be considered to restore the network of Z. marina patches. The study proves the potentials of combining hydrodynamic models and network analysis to support marine conservation and planning, and highlights the importance of collaboration between ecologists, oceanographers, and practitioners in this endeavour.


Asunto(s)
Zosteraceae , Países Bálticos , Mar del Norte , Estaciones del Año
8.
Conserv Physiol ; 10(1): coac034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821877

RESUMEN

To predict the response of the European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas/Magallana gigas) populations to environmental changes, it is key to understand their life history traits. The Dynamic Energy Budget (DEB) theory is a mechanistic framework that enables the quantification of the bioenergetics of development, growth and reproduction from fertilization to death across different life stages. This study estimates the DEB parameters for the European flat oyster, based on a comprehensive dataset, while DEB parameters for the Pacific cupped oyster were extracted from the literature. The DEB parameters for both species were validated using growth rates from laboratory experiments at several constant temperatures and food levels as well as with collected aquaculture data from the Limfjorden, Denmark, and the German Bight. DEB parameters and the Arrhenius temperature parameters were compared to get insight in the life history traits of both species. It is expected that increasing water temperatures due to climate change will be beneficial for both species. Lower assimilation rates and high energy allocation to soma explain O. edulis' slow growth and low reproductive output. Crassostrea gigas' high assimilation rate, low investment in soma and extremely low reserve mobility explains the species' fast growth, high tolerance to starvation and high reproductive output. Hence, the reproductive strategies of both species are considerably different. Flat oysters are especially susceptible to unfavourable environmental conditions during the brooding period, while Pacific oysters' large investment in reproduction make it well adapted to highly diverse environments. Based on the life history traits, aquaculture and restoration of O. edulis should be executed in environments with suitable and stable conditions.

9.
Mar Pollut Bull ; 173(Pt A): 113004, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34601250

RESUMEN

European legislation requires monitoring of toxic algae in marine areas where shellfish are harvested for consumption. Monitoring assumes the existence of homogeneous water bodies, the definition of which have important implications for stakeholders and consumers. Yet, the definition of homogeneous water bodies remains unclear. Here we present a methodology to divide coastal and estuarine waters into homogeneous water bodies to monitor toxic algae. The proposed method is mainly based on water transport, and secondarily on oceanographic characteristics; salinity and sea surface height. We apply the methodology to the Limfjord in Denmark and demonstrate its usefulness in areas with a complicated coastal morphology. The oceanographic descriptors applied in the method are standard outputs from coastal hydrodynamical models. Provided that validated and high resolution model output is available for a given area, the technique is thus adaptable to other morphologically and oceanographically complicated estuarine and coastal areas where toxic algae monitoring is necessary.


Asunto(s)
Salinidad , Mariscos , Monitoreo del Ambiente , Agua
10.
Sci Total Environ ; 736: 139624, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32479965

RESUMEN

Worldwide, coastal and marine policies are increasingly aiming for environmental protection, and eutrophication is a global challenge, particularly impairing near-coastal marine water bodies. In this context, mussel mitigation aquaculture is currently considered an effective tool to extract nutrients from such water bodies. Mussel mitigation farming using longline systems with loops of collector material is a well-developed technology and considered promising in the western Baltic Sea. Besides several spatially limited field studies, a suitable spatial model for site-specific implementation is still lacking. In this study, we present a modular spatial model, consisting of a spatial and temporal habitat factor model (Module 1), blue mussel growth model (Module 2), mussel farm model (Module 3), and an avoidance of food limitation model (Module 4). The modules integrate data from in situ monitoring, mussel growth experiments, and eco-physiological modelling for the western Baltic Sea, to estimate spatially explicit nutrient reduction potentials. The model is flexible with respect to farm setups and harvest times and considers natural variability, model uncertainty, and required hydrodynamics. Modelling results proved valid at all scales and modules, and point out key areas for efficient mussel mitigation farms in Danish, German and Swedish areas. Modelled long-term mean mitigation potentials for harvest in November reach up to 0.88 tN/ha and 0.05 tP/ha for a farm setup using 2 m depth-range of the water column and 3.0 tN/ha and 0.17 tP/ha using up to 8 m, respectively. For Danish water bodies, we demonstrate that in efficient areas, mitigation farms (18.8 ha, 90 km collector substrate in loops with 2 m depth-range) required <3.6% of the space to extract the target nitrogen loads for good ecological status. The developed approach could prove valuable for implementing environmental policies in aquatic systems, e.g. in situ nutrient mitigation, aquaculture spatial planning, and habitat suitability mapping.


Asunto(s)
Mytilus edulis , Animales , Países Bálticos , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Nutrientes , Suecia
11.
PLoS One ; 15(4): e0231193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32275678

RESUMEN

The improved understanding of complex interactions of marine ecosystem components makes the use of fully coupled hydrodynamic, biogeochemical and individual based models more and more relevant. At the same time, the increasing complexity of the models and diverse user backgrounds calls for improved user friendliness and flexibility of the model systems. We present FlexSem, a versatile and user-friendly framework for 3D hydrodynamic, biogeochemical, individual based and sediment transport modelling. The purpose of the framework is to enable natural scientists to conduct advanced 3D simulations in the marine environment, including any relevant processes. This is made possible by providing a precompiled portable framework, which still enables the user to pick any combination of models and provide user defined equation systems to be solved during the simulation. We here present the ideas behind the framework design, the implementation and documentation of the numerical solution to the Navier-Stokes equations in the hydrodynamic module, the surface heat budget model, the pelagic and benthic equation solvers and the Lagrangian movement of the agents in the agent based model. Five examples of different applications of the system are shown: 1) Hydrodynamics in the Disko Bay in west Greenland, 2) A biogeochemical pelagic and benthic model in the inner Danish waters, 3) A generic mussel farm model featuring offline physics, food levels and mussel eco-physiology, 4) Sediment transport in Clarion-Clipperton zone at the bottom of the Pacific and 5) Hydrodynamics coupled with an agent based model around Zanzibar in Tanzania. Hence we demonstrate that the model can be set up for any area with enough forcing data and used to solve a wide range of applications.


Asunto(s)
Simulación por Computador , Ecosistema , Agua de Mar , Clima Tropical , África Oriental , Animales , Bivalvos , Sedimentos Geológicos/química , Groenlandia , Hidrodinámica , Océanos y Mares
12.
Mar Pollut Bull ; 156: 111254, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32510396

RESUMEN

Mussel farming has increasingly come into focus as a potential mitigation measure for fish farms and eutrophication, in addition to being a food source. This study presents a GIS-based suitability analysis combined with a farm scale model to identify appropriate mussel farming sites. The sites are investigated in terms of potential mussel harvest, nutrient removal, and effects on water transparency. The model is applied to the south-western Baltic Sea. The identified suitable area is about 5-8% of the case study extent. The model shows that elevated chlorophyll levels stimulate mussel growth and that upon mussel harvest, nutrients can be removed. A single mussel farm cannot compensate for all nutrients emitted by a fish farm, but it can increase water transparency up to at least 200 m from the farm. Potential nutrient removal and water transparency increases are essential criteria for site selection in eutrophic seas, such as the Baltic Sea.


Asunto(s)
Acuicultura , Bivalvos , Agricultura , Animales , Países Bálticos , Eutrofización , Nitrógeno/análisis , Océanos y Mares
13.
PLoS One ; 13(7): e0199168, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30028849

RESUMEN

Achieving good environmental status in the Baltic Sea region requires decision support tools which are based on scientific knowledge across multiple disciplines. Such tools should integrate the complexity of the ecosystem and enable exploration of different natural and anthropogenic pressures such as climate change, eutrophication and fishing pressures in order to compare alternative management strategies. We present a new framework, with a Baltic implementation of the spatially-explicit end-to-end Atlantis ecosystem model linked to two external models, to explore the different pressures on the marine ecosystem. The HBM-ERGOM initializes the Atlantis model with high-resolution physical-chemical-biological and hydrodynamic information while the FISHRENT model analyses the fisheries economics of the output of commercial fish biomass for the Atlantis terminal projection year. The Baltic Atlantis model composes 29 sub-areas, 9 vertical layers and 30 biological functional groups. The balanced calibration provides realistic levels of biomass for, among others, known stock sizes of top predators and of key fish species. Furthermore, it gives realistic levels of phytoplankton biomass and shows reasonable diet compositions and geographical distribution patterns for the functional groups. By simulating several scenarios of nutrient load reductions on the ecosystem and testing sensitivity to different fishing pressures, we show that the model is sensitive to those changes and capable of evaluating the impacts on different trophic levels, fish stocks, and fisheries associated with changed benthic oxygen conditions. We conclude that the Baltic Atlantis forms an initial basis for strategic management evaluation suited for conducting medium to long term ecosystem assessments which are of importance for a number of pan-Baltic stakeholders in relation to anthropogenic pressures such as eutrophication, climate change and fishing pressure, as well as changed biological interactions between functional groups.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Explotaciones Pesqueras/tendencias , Peces/fisiología , Cadena Alimentaria , Modelos Estadísticos , Fitoplancton/fisiología , Animales , Océano Atlántico , Países Bálticos , Biomasa , Cambio Climático , Simulación por Computador , Ecosistema , Eutrofización , Humanos , Conducta Predatoria/fisiología
14.
PLoS One ; 8(2): e55553, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23460787

RESUMEN

An unprecedented 85 harbour porpoises stranded freshly dead along approximately 100 km of Danish coastline from 7-15 April, 2005. This total is considerably above the mean weekly stranding rate for the whole of Denmark, both for any time of year, 1.23 animals/week (ranging from 0 to 20 during 2003-2008, excluding April 2005), and specifically in April, 0.65 animals/week (0 to 4, same period). Bycatch was established as the cause of death for most of the individuals through typical indications of fisheries interactions, including net markings in the skin and around the flippers, and loss of tail flukes. Local fishermen confirmed unusually large porpoise bycatch in nets set for lumpfish (Cyclopterus lumpus) and the strandings were attributed to an early lumpfish season. However, lumpfish catches for 2005 were not unusual in terms of season onset, peak or total catch, when compared to 2003-2008. Consequently, human activity was combined with environmental factors and the variation in Danish fisheries landings (determined through a principal component analysis) in a two-part statistical model to assess the correlation of these factors with both the presence of fresh strandings and the numbers of strandings on the Danish west coast. The final statistical model (which was forward selected using Akaike information criterion; AIC) indicated that naval presence is correlated with higher rates of porpoise strandings, particularly in combination with certain fisheries, although it is not correlated with the actual presence of strandings. Military vessels from various countries were confirmed in the area from the 7th April, en route to the largest naval exercise in Danish waters to date (Loyal Mariner 2005, 11-28 April). Although sonar usage cannot be confirmed, it is likely that ships were testing various equipment prior to the main exercise. Thus naval activity cannot be ruled out as a possible contributing factor.


Asunto(s)
Océanos y Mares , Phocoena/fisiología , Animales , Autopsia , Dinamarca , Explotaciones Pesqueras , Geografía , Actividades Humanas , Humanos , Modelos Lineales , Análisis de Componente Principal , Estaciones del Año , Agua de Mar , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA