Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Development ; 147(6)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32108023

RESUMEN

Members of the Iroquois B (IrxB) homeodomain cluster genes, specifically Irx3 and Irx5, are crucial for heart, limb and bone development. Recently, we reported their importance for oocyte and follicle survival within the developing ovary. Irx3 and Irx5 expression begins after sex determination in the ovary but remains absent in the fetal testis. Mutually antagonistic molecular signals ensure ovary versus testis differentiation with canonical Wnt/ß-catenin signals paramount for promoting the ovary pathway. Notably, few direct downstream targets have been identified. We report that Wnt/ß-catenin signaling directly stimulates Irx3 and Irx5 transcription in the developing ovary. Using in silico analysis of ATAC- and ChIP-Seq databases in conjunction with mouse gonad explant transfection assays, we identified TCF/LEF-binding sequences within two distal enhancers of the IrxB locus that promote ß-catenin-responsive ovary expression. Meanwhile, Irx3 and Irx5 transcription is suppressed within the developing testis by the presence of H3K27me3 on these same sites. Thus, we resolved sexually dimorphic regulation of Irx3 and Irx5 via epigenetic and ß-catenin transcriptional control where their ovarian presence promotes oocyte and follicle survival vital for future ovarian health.


Asunto(s)
Epigénesis Genética/fisiología , Gónadas/embriología , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Ovario/embriología , Ovario/metabolismo , Caracteres Sexuales , Diferenciación Sexual/genética , Testículo/embriología , Testículo/metabolismo , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 15(5): e1007895, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31116734

RESUMEN

XX and XY fetal gonads are initially bipotential, poised between the ovary and testis fate. Multiple lines of evidence suggest that commitment to testis fate requires the repression of genes associated with ovary fate. It was previously shown that loss of CBX2, the subunit of the Polycomb Repressive Complex 1 (PRC1) that binds H3K27me3 and mediates silencing, leads to ovary development in XY mice and humans. While it had been proposed that CBX2 is an activator of the testis-determining gene Sry, we investigated the alternative possibility that CBX2 has a direct role as a repressor of the antagonistic ovary-promoting pathway. To investigate this possibility, we developed a quantitative genome-wide profile of the repressive histone mark H3K27me3 and its active counterpart H3K4me3 in isolated XY and XX gonadal supporting cells before and after sex determination. We show that testis and ovary sex-determining (SD) genes are bivalent before sex determination, providing insight into how the bipotential state of the gonad is established at the epigenetic level. After sex determination, many SD genes of the alternate pathway remain bivalent, possibly contributing to the ability of these cells to transdifferentiate even in adults. The finding that many genes in the Wnt signaling pathway were targeted for H3K27me3-mediated repression in Sertoli cells led us to test whether deletion of Wnt4 could rescue testis development in Cbx2 mutants. We show that Sry expression and testis development were rescued in XY Cbx2-/-;Wnt4-/- mice. Furthermore, we show that CBX2 directly binds the downstream Wnt signaler Lef1, an ovary-promoting gene that remains bivalent in Sertoli cells. Our results suggest that stabilization of the testis fate requires CBX2-mediated repression of bivalent ovary-determining genes, which would otherwise block testis development.


Asunto(s)
Epigénesis Genética , Ovario/metabolismo , Complejo Represivo Polycomb 1/genética , Procesos de Determinación del Sexo , Testículo/metabolismo , Vía de Señalización Wnt/genética , Animales , Embrión de Mamíferos , Femenino , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Masculino , Ratones , Ovario/citología , Ovario/crecimiento & desarrollo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Complejo Represivo Polycomb 1/deficiencia , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Diferenciación Sexual , Testículo/citología , Testículo/crecimiento & desarrollo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
3.
Dev Biol ; 446(2): 168-179, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594505

RESUMEN

Cis-regulatory elements are critical for the precise spatiotemporal regulation of genes during development. However, identifying functional regulatory sites that drive cell differentiation in vivo has been complicated by the high numbers of cells required for whole-genome epigenetic assays. Here, we identified putative regulatory elements during sex determination by performing ATAC-seq and ChIP-seq for H3K27ac in purified XX and XY gonadal supporting cells before and after sex determination in mice. We show that XX and XY supporting cells initiate sex determination with similar chromatin landscapes and acquire sex-specific regulatory elements as they commit to the male or female fate. To validate our approach, we identified a functional gonad-specific enhancer downstream of Bmp2, an ovary-promoting gene. This work increases our understanding of the complex regulatory network underlying mammalian sex determination and provides a powerful resource for identifying non-coding regulatory elements that could harbor mutations that lead to Disorders of Sexual Development.


Asunto(s)
Cromatina/genética , Gónadas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Procesos de Determinación del Sexo/genética , Acetilación , Animales , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Histonas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos
4.
Development ; 144(4): 720-730, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087634

RESUMEN

A current goal of molecular biology is to identify transcriptional networks that regulate cell differentiation. However, identifying functional gene regulatory elements has been challenging in the context of developing tissues where material is limited and cell types are mixed. To identify regulatory sites during sex determination, we subjected Sertoli cells from mouse fetal testes to DNaseI-seq and ChIP-seq for H3K27ac. DNaseI-seq identified putative regulatory sites around genes enriched in Sertoli and pregranulosa cells; however, active enhancers marked by H3K27ac were enriched proximal to only Sertoli-enriched genes. Sequence analysis identified putative binding sites of known and novel transcription factors likely controlling Sertoli cell differentiation. As a validation of this approach, we identified a novel Sertoli cell enhancer upstream of Wt1, and used it to drive expression of a transgenic reporter in Sertoli cells. This work furthers our understanding of the complex genetic network that underlies sex determination and identifies regions that potentially harbor non-coding mutations underlying disorders of sexual development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Elementos Reguladores de la Transcripción , Células de Sertoli/metabolismo , Animales , Sitios de Unión , Diferenciación Celular , Desoxirribonucleasa I/metabolismo , Elementos de Facilitación Genéticos , Genes Reporteros , Genoma , Histonas/metabolismo , Homocigoto , Masculino , Ratones , Mutación , Regiones Promotoras Genéticas , Procesos de Determinación del Sexo , Testículo/embriología , Transgenes
5.
PLoS Genet ; 8(3): e1002575, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438826

RESUMEN

The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates.


Asunto(s)
Desarrollo Embrionario/genética , Células Endoteliales , Células Germinativas , Gónadas , Células del Estroma , Animales , Diferenciación Celular , Linaje de la Célula , Células Endoteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Masculino , Ratones , Análisis por Micromatrices , Procesos de Determinación del Sexo , Células del Estroma/metabolismo
6.
Dev Biol ; 383(2): 295-306, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24036309

RESUMEN

Mammalian sex determination is controlled by antagonistic pathways that are initially co-expressed in the bipotential gonad and subsequently become male- or female-specific. In XY gonads, testis development is initiated by upregulation of Sox9 by SRY in pre-Sertoli cells. Disruption of either gene leads to complete male-to-female sex reversal. Ovarian development is dependent on canonical Wnt signaling through Wnt4, Rspo1 and ß-catenin. However, only a partial female-to-male sex reversal results from disruption of these ovary-promoting genes. In Wnt4 and Rspo1 mutants, there is evidence of pregranulosa cell-to-Sertoli cell transdifferentiation near birth, following a severe decline in germ cells. It is currently unclear why primary sex reversal does not occur at the sex-determining stage, but instead occurs near birth in these mutants. Here we show that Wnt4-null and Rspo1-null pregranulosa cells transition through a differentiated granulosa cell state prior to transdifferentiating towards a Sertoli cell fate. This transition is preceded by a wave of germ cell death that is closely associated with the disruption of pregranulosa cell quiescence. Our results suggest that maintenance of mitotic arrest in pregranulosa cells may preclude upregulation of Sox9 in cases where female sex-determining genes are disrupted. This may explain the lack of complete sex reversal in such mutants at the sex-determining stage.


Asunto(s)
Puntos de Control del Ciclo Celular , Diferenciación Celular , Transdiferenciación Celular , Células de la Granulosa/citología , Mitosis , Mutación/genética , Proteína Wnt4/metabolismo , Animales , Animales Recién Nacidos , Hormona Antimülleriana/metabolismo , Muerte Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Células de la Granulosa/metabolismo , Masculino , Meiosis , Ratones , Células de Sertoli/citología , Células de Sertoli/metabolismo , Trombospondinas/metabolismo
7.
Biol Reprod ; 86(2): 37, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21976597

RESUMEN

The embryonic origins of ovarian granulosa cells have been a subject of debate for decades. By tamoxifen-induced lineage tracing of Foxl2-expressing cells, we show that descendants of the bipotential supporting cell precursors in the early gonad contribute granulosa cells to a specific population of follicles in the medulla of the ovary that begin to grow immediately after birth. These precursor cells arise from the proliferative ovarian surface epithelium and enter mitotic arrest prior to upregulating Foxl2. Granulosa cells that populate the cortical primordial follicles activated in adult life derive from the surface epithelium perinatally, and enter mitotic arrest at that stage. Ingression from the surface epithelium dropped to undetectable levels by Postnatal Day 7, when most surviving oocytes were individually encapsulated by granulosa cells. These findings add complexity to the standard model of sex determination in which the Sertoli and granulosa cells of the adult testis and ovary directly stem from the supporting cell precursors of the bipotential gonad.


Asunto(s)
Linaje de la Célula , Células de la Granulosa/citología , Folículo Ovárico/citología , Ovario/embriología , Animales , Diferenciación Celular , Desarrollo Embrionario , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/metabolismo , Células de la Granulosa/metabolismo , Ratones , Ratones Transgénicos , Modelos Animales , Folículo Ovárico/metabolismo , Ovario/citología
8.
Dev Biol ; 327(2): 516-23, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19210962

RESUMEN

The apical ectodermal ridge (AER) in the vertebrate limb is required for limb outgrowth and patterning. To investigate the role BMP ligands expressed in the AER play in limb development we selectively inactivated both Bmp2 and Bmp4 in this tissue. The autopods of mice lacking both of these genes contained extra digits, digit bifurcations and interdigital webbing due to a decrease in programmed cell death and an increase in cell proliferation in the underlying mesoderm. Upon removal of Bmp2 and Bmp4 in the AER, no defects in proximal-distal patterning were observed. At the molecular level, removal of Bmp2 and Bmp4 in the AER caused an increase in Fgf expression, which correlated with an increase in both the width and length of the AER. Investigation of Engrailed-1 (En1) expression in the AER of limb buds in which Bmp2 and Bmp4 had been removed indicated that En1 expression was absent from this tissue. Our data suggests that AER expression of Bmp2 and Bmp4 is required for digit and dorsal-ventral patterning but surprisingly not for limb outgrowth.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Muerte Celular/fisiología , Ectodermo , Extremidades , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/genética , Proliferación Celular , Citocinas , Ectodermo/anatomía & histología , Ectodermo/fisiología , Extremidades/anatomía & histología , Extremidades/embriología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Deformidades Congénitas de las Extremidades , Masculino , Ratones , Transducción de Señal/fisiología
9.
Hum Mol Genet ; 17(19): 2949-55, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18617533

RESUMEN

During mammalian sex determination, expression of the Y-linked gene Sry shifts the bipotential gonad toward a testicular fate by upregulating a feed-forward loop between FGF9 and SOX9 to establish SOX9 expression in somatic cells. We previously proposed that these signals are mutually antagonistic with counteracting signals in XX gonads and that a shift in the balance of these factors leads to either male or female development. Evidence in mice and humans suggests that the male pathway is opposed by the expression of two signals, WNT4 and R-SPONDIN-1 (RSPO1), that promote the ovarian fate and block testis development. Both of these ligands can activate the canonical Wnt signaling pathway. Duplication of the distal portion of chromosome 1p, which includes both WNT4 and RSPO1, overrides the male program and causes male-to-female sex reversal in XY patients. To determine whether activation of beta-catenin is sufficient to block the testis pathway, we have ectopically expressed a stabilized form of beta-catenin in the somatic cells of XY gonads. Our results show that activation of beta-catenin in otherwise normal XY mice effectively disrupts the male program and results in male-to-female sex-reversal. The identification of beta-catenin as a key pro-ovarian and anti-testis signaling molecule will further our understanding of the mechanisms controlling sex determination and the molecular mechanisms that lead to sex-reversal.


Asunto(s)
Trastornos del Desarrollo Sexual , Regulación del Desarrollo de la Expresión Génica , Ovario/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , beta Catenina/metabolismo , Animales , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovario/metabolismo , Fenotipo , Diferenciación Sexual , Transducción de Señal , Testículo/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt4 , beta Catenina/genética
10.
Science ; 360(6396): 1469-1473, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29903884

RESUMEN

Cell fate decisions require appropriate regulation of key genes. Sox9, a direct target of SRY, is pivotal in mammalian sex determination. In vivo high-throughput chromatin accessibility techniques, transgenic assays, and genome editing revealed several novel gonadal regulatory elements in the 2-megabase gene desert upstream of Sox9 Although others are redundant, enhancer 13 (Enh13), a 557-base pair element located 565 kilobases 5' from the transcriptional start site, is essential to initiate mouse testis development; its deletion results in XY females with Sox9 transcript levels equivalent to those in XX gonads. Our data are consistent with the time-sensitive activity of SRY and indicate a strict order of enhancer usage. Enh13 is conserved and embedded within a 32.5-kilobase region whose deletion in humans is associated with XY sex reversal, suggesting that it is also critical in humans.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Disgenesia Gonadal 46 XY/genética , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/embriología , Animales , Secuencia Conservada , Femenino , Humanos , Masculino , Ratones , Eliminación de Secuencia , Proteína de la Región Y Determinante del Sexo/genética , Sitio de Iniciación de la Transcripción
11.
PLoS One ; 7(10): e47238, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23091613

RESUMEN

The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells.


Asunto(s)
Células Germinativas/metabolismo , Gónadas/embriología , Procesos de Determinación del Sexo , Diferenciación Sexual , Animales , Biomarcadores , Linaje de la Célula , Transdiferenciación Celular , Femenino , Células Germinativas/citología , Gónadas/citología , Masculino , Ratones , Ovario/citología , Ovario/embriología , Ovario/metabolismo , Células de Sertoli
12.
PLoS One ; 7(5): e37826, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22662233

RESUMEN

Outgrowth and patterning of the vertebrate limb requires a functional apical ectodermal ridge (AER). The AER is a thickening of ectodermal tissue located at the distal end of the limb bud. Loss of this structure, either through genetic or physical manipulations results in truncation of the limb. A number of genes, including Bmps, are expressed in the AER. Previously, it was shown that removal of the BMP receptor Bmpr1a specifically from the AER resulted in complete loss of hindlimbs suggesting that Bmp signaling in the AER is required for limb outgrowth. In this report, we genetically removed the three known AER-expressed Bmp ligands, Bmp2, Bmp4 and Bmp7 from the AER of the limb bud using floxed conditional alleles and the Msx2-cre allele. Surprisingly, only defects in digit patterning and not limb outgrowth were observed. In triple mutants, the anterior and posterior AER was present but loss of the central region of the AER was observed. These data suggest that Bmp ligands expressed in the AER are not required for limb outgrowth but instead play an essential role in maintaining the AER and patterning vertebrate digits.


Asunto(s)
Tipificación del Cuerpo/genética , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 7/genética , Extremidades/embriología , Esbozos de los Miembros/crecimiento & desarrollo , Alelos , Animales , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Eliminación de Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Deformidades Congénitas de las Extremidades/genética , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Masculino , Ratones , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo
14.
Curr Top Dev Biol ; 83: 151-83, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19118666

RESUMEN

Sex determination in mammals results in two discrete sexes, male and female. The sexes are genetically distinct at fertilization (XY = male and XX = female). However, there is little evidence for differences in their development until mid-gestation when the gonadal primordium forms. Recent research suggests that signals within this tissue maintain the gonad in a bipotential state, balanced between two alternative fates, testis or ovary. At mid-gestation, expression of the Y-linked gene Sry in gonadal cells triggers the divergence of gonad development toward the testis pathway. The critical role of Sry may be simply to promote the stable expression of SOX9 in the key cell population in the gonad. Establishment of SOX9 in this lineage is opposed by female promoting factors that push the gonad toward an ovarian fate. Both the male and female sides of these antagonistic pathways are augmented by feedback loops and reinforcing signals that canalize development, once the initial choice is made. Hormones and growth factors produced by the developing testis regulate the male differentiation of the sex ducts and the external genitalia during fetal life. In contrast, the ovary is not required for the fetal development of female genital ducts or female external genitalia, as these organs develop in the absence of a gonad. At puberty, hormones produced by the testis or the ovary control the sex-specific differentiation of the musculature, mammary tissue, and body hair. Male or female development of the brain was previously thought to depend on hormones produced by the testis or ovary. However, recent evidence reveals expression differences between XX and XY brains prior to the time that hormones are circulating, suggesting that some influences on brain development may be autonomous to the cells of the brain.


Asunto(s)
Gónadas/embriología , Procesos de Determinación del Sexo , Desarrollo Sexual , Animales , Diferenciación Celular , Femenino , Gónadas/citología , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Humanos , Masculino , Ratones , Modelos Biológicos , Caracteres Sexuales , Diferenciación Sexual , Desarrollo Sexual/genética
15.
Biol Reprod ; 79(4): 696-703, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18633141

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression. Hundreds of miRNAs are expressed in mammals; however, their functions are just starting to be uncovered. MicroRNAs are processed from a long hairpin mRNA transcript, down to a approximately 23-nucleotide duplex. The enzyme Dicer1 is required for miRNA processing, and mouse knockouts of Dicer1 are embryonic lethal before 7.5 days postcoitus. To examine the function of miRNAs specifically in the germline, we used a mouse model that expresses Cre recombinase from the TNAP locus and a floxed Dicer1 conditional allele. Removal of Dicer1 from germ cells resulted in male infertility. Germ cells were present in adult testes, but few tubules contained elongating spermatids. Germ cells that did differentiate to elongating spermatids exhibited abnormal morphology and motility. Rarely, sperm lacking Dicer1 could fertilize wild-type eggs to generate viable offspring. These results show that Dicer1 and miRNAs are essential for proper differentiation of the male germline.


Asunto(s)
Diferenciación Celular/genética , ARN Helicasas DEAD-box/fisiología , Endorribonucleasas/fisiología , Células Germinativas/fisiología , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Femenino , Células Germinativas/metabolismo , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN/genética , Ribonucleasa III , Motilidad Espermática/genética , Espermatogénesis/genética , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiología
16.
Development ; 133(17): 3411-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16887828

RESUMEN

DNA methylation is necessary for the silencing of endogenous retrotransposons and the maintenance of monoallelic gene expression at imprinted loci and on the X chromosome. Dynamic changes in DNA methylation occur during the initial stages of primordial germ cell development; however, all consequences of this epigenetic reprogramming are not understood. DNA demethylation in postmigratory primordial germ cells coincides with erasure of genomic imprints and reactivation of the inactive X chromosome, as well as ongoing germ cell differentiation events. To investigate a possible role for DNA methylation changes in germ cell differentiation, we have studied several marker genes that initiate expression at this time. Here, we show that the postmigratory germ cell-specific genes Mvh, Dazl and Scp3 are demethylated in germ cells, but not in somatic cells. Premature loss of genomic methylation in Dnmt1 mutant embryos leads to early expression of these genes as well as GCNA1, a widely used germ cell marker. In addition, GCNA1 is ectopically expressed by somatic cells in Dnmt1 mutants. These results provide in vivo evidence that postmigratory germ cell-specific genes are silenced by DNA methylation in both premigratory germ cells and somatic cells. This is the first example of ectopic gene activation in Dnmt1 mutant mice and suggests that dynamic changes in DNA methylation regulate tissue-specific gene expression of a set of primordial germ cell-specific genes.


Asunto(s)
Metilación de ADN , Silenciador del Gen , Células Germinativas/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Linaje de la Célula , Movimiento Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Cartilla de ADN , Femenino , Células Germinativas/citología , Ratones , Ratones Mutantes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sistema Urogenital/embriología , Cromosoma X
17.
Stem Cells ; 23(9): 1314-23, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16051982

RESUMEN

The capacity for cellular differentiation is governed not only by the repertoire of available transcription factors but by the accessibility of cis-regulatory elements. Studying changes in epigenetic modifications during stem cell differentiation will help us understand how cells maintain or lose differentiation potential. We investigated changes in DNA methylation during the transition of pluripotent embryonic stem cells (ESCs) into differentiated cell types. Using a methylation-sensitive restriction fingerprinting method, we identified a novel adenine nucleotide (ADP/ATP) translocase gene, Ant4, that was selectively hypomethylated and expressed in undifferentiated mouse ESCs. In contrast to other pluripotent stem cell-specific genes such as Oct-4 and Nanog, the Ant4 gene was readily derepressed in differentiated cells after 5-aza-2'-deoxycytidine treatment. Moreover, expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b was essential for repression and DNA methylation of the Ant4 gene during ESC differentiation. Although the deduced amino acid sequence of Ant4 is highly homologous to the previously identified Ant isoforms, the expression of Ant4 was uniquely restricted to developing gametes in adult mice, and its promoter hypomethylation was observed only in testis. Additionally, Ant4 was expressed in primordial germ cells. These data indicate that Ant4 is a pluripotent stem cell- and germ cell-specific isoform of adenine nucleotide translocase in mouse and that DNA methylation plays a primary role in its transcriptional silencing in somatic cells.


Asunto(s)
Metilación de ADN , Silenciador del Gen , Translocasas Mitocondriales de ADP y ATP/genética , Células Madre/enzimología , Animales , Secuencia de Bases , Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Translocasas Mitocondriales de ADP y ATP/biosíntesis , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Espermatozoides/enzimología , Células Madre/citología , Testículo/citología , ADN Metiltransferasa 3B
18.
Dev Biol ; 258(1): 201-8, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12781693

RESUMEN

The initial cohort of mammalian gametes is established by the proliferation of primordial germ cells in the early embryo. Primordial germ cells first appear in extraembyronic tissues and subsequently migrate to the developing gonad. Soon after they arrive in the gonad, the germ cells cease dividing and undertake sexually dimorphic patterns of development. Male germ cells arrest mitotically, while female germ cells directly enter meiotic prophase I. These sex-specific differentiation events are imposed upon a group of sex-common differentiation events that are shared by XX and XY germ cells. We have studied the appearance of GCNA1, a postmigratory sex-common germ cell marker, in cultures of premigratory germ cells to investigate how this differentiation program is regulated. Cultures in which proliferation was either inhibited or stimulated displayed a similar extent of differentiation as controls, suggesting that some differentiation events are the result of a cell-intrinsic program and are independent of cell proliferation. We also found that GCNA1 expression was accelerated by agents which promote DNA demethylation or histone acetylation. These results suggest that genomic demethylation of proliferative phase primordial germ cells is a mechanism by which germ cell maturation is coordinated.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Metilación de ADN , Células Germinativas/fisiología , Fosfatasa Alcalina/análisis , Animales , Antígenos Nucleares/metabolismo , Azacitidina/farmacología , Biomarcadores , División Celular , Células Cultivadas , Femenino , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Ácidos Hidroxámicos/farmacología , Masculino , Meiosis , Ratones , Ratones Endogámicos , Proteínas Nucleares/biosíntesis , Oogonios/citología , Oogonios/efectos de los fármacos , Oogonios/metabolismo , Diferenciación Sexual , Espermatogonias/citología , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA