Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dev Dyn ; 252(7): 1046-1060, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37002899

RESUMEN

BACKGROUND: Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied. RESULTS: We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells. CONCLUSIONS: Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain.


Asunto(s)
Colágeno Tipo IV , Pez Cebra , Animales , Humanos , Colágeno Tipo IV/genética , Células Endoteliales , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Membrana Basal/metabolismo
2.
Anesthesiology ; 123(3): 590-602, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26120770

RESUMEN

BACKGROUND: To minimize the risk of pneumonia, many anesthesiologists delay anesthesia-requiring procedures when patients exhibit signs of viral upper respiratory tract infection. Postinfluenza secondary bacterial pneumonias (SBPs) are a major cause of morbidity and mortality. An increased host susceptibility to SBP postinfluenza has been attributed to physical damage to the pulmonary epithelium, but flu-induced effects on the immune system are being shown to also play an important role. The authors demonstrate that halothane mitigates the risk of SBP postflu through modulation of the effects of type I interferon (IFN). METHODS: Mice (n = 6 to 15) were exposed to halothane or ketamine and treated with influenza and Streptococcus pneumoniae. Bronchoalveolar lavage and lung homogenate were procured for the measurement of inflammatory cells, cytokines, chemokines, albumin, myeloperoxidase, and bacterial load. RESULTS: Halothane exposure resulted in decreased bacterial burden (7.9 ± 3.9 × 10 vs. 3.4 ± 1.6 × 10 colony-forming units, P < 0.01), clinical score (0.6 ± 0.2 vs. 2.3 ± 0.2, P < 0.0001), and lung injury (as measured by bronchoalveolar lavage albumin, 1.5 ± 0.7 vs. 6.8 ± 1.6 mg/ml, P < 0.01) in CD-1 mice infected with flu for 7 days and challenged with S. pneumoniae on day 6 postflu. IFN receptor A1 knockout mice similarly infected with flu and S. pneumoniae, but not exposed to halothane, demonstrated a reduction of lung bacterial burden equivalent to that achieved in halothane-exposed wild-type mice. CONCLUSION: These findings indicate that the use of halogenated volatile anesthetics modulates the type I IFN response to influenza and enhance postinfection antibacterial immunity.


Asunto(s)
Modelos Animales de Enfermedad , Halotano/administración & dosificación , Interferón Tipo I/antagonistas & inhibidores , Infiltración Neutrófila/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Neumonía Bacteriana/tratamiento farmacológico , Anestésicos por Inhalación/administración & dosificación , Animales , Perros , Subtipo H1N1 del Virus de la Influenza A , Interferón Tipo I/metabolismo , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/fisiología , Infecciones por Orthomyxoviridae/complicaciones , Neumonía Bacteriana/etiología , Streptococcus pneumoniae
3.
Proc Natl Acad Sci U S A ; 108(38): 16002-7, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21911392

RESUMEN

Increased numbers of S100A4(+) cells are associated with poor prognosis in patients who have cancer. Although the metastatic capabilities of S100A4(+) cancer cells have been examined, the functional role of S100A4(+) stromal cells in metastasis is largely unknown. To study the contribution of S100A4(+) stromal cells in metastasis, we used transgenic mice that express viral thymidine kinase under control of the S100A4 promoter to specifically ablate S100A4(+) stromal cells. Depletion of S100A4(+) stromal cells significantly reduced metastatic colonization without affecting primary tumor growth. Multiple bone marrow transplantation studies demonstrated that these effects of S100A4(+) stromal cells are attributable to local non-bone marrow-derived S100A4(+) cells, which are likely fibroblasts in this setting. Reduction in metastasis due to the loss of S100A4(+) fibroblasts correlated with a concomitant decrease in the expression of several ECM molecules and growth factors, particularly Tenascin-C and VEGF-A. The functional importance of stromal Tenascin-C and S100A4(+) fibroblast-derived VEGF-A in metastasis was established by examining Tenascin-C null mice and transgenic mice expressing Cre recombinase under control of the S100A4 promoter crossed with mice carrying VEGF-A alleles flanked by loxP sites, which exhibited a significant decrease in metastatic colonization without effects on primary tumor growth. In particular, S100A4(+) fibroblast-derived VEGF-A plays an important role in the establishment of an angiogenic microenvironment at the metastatic site to facilitate colonization, whereas stromal Tenascin-C may provide protection from apoptosis. Our study demonstrates a crucial role for local S100A4(+) fibroblasts in providing the permissive "soil" for metastatic colonization, a challenging step in the metastatic cascade.


Asunto(s)
Proteínas S100/metabolismo , Células del Estroma/metabolismo , Tenascina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ganciclovir/farmacología , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética , Células del Estroma/efectos de los fármacos , Tenascina/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Microambiente Tumoral/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética
4.
Protein Sci ; 14(4): 1039-48, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15741333

RESUMEN

Phosphorylase kinase (PhK), a 1.3-MDa (alphabetagammadelta)(4) hexadecameric complex, is a Ca(2+)-dependent regulatory enzyme in the cascade activation of glycogenolysis. PhK comprises two arched (alphabetagammadelta)(2) octameric lobes that are oriented back-to-back with overall D(2) symmetry and joined by connecting bridges. From chemical cross-linking and electron microscopy, it is known that the binding of Ca(2+) by PhK perturbs the structure of all its subunits and promotes redistribution of density throughout both its lobes and bridges; however, little is known concerning the interrelationship of these effects. To measure structural changes induced by Ca(2+) in the PhK complex in solution, small-angle X-ray scattering was performed on nonactivated and Ca(2+)-activated PhK. Although the overall dimensions of the complex were not affected by Ca(2+), the cation did promote a shift in the distribution of the scattering density within the hydrated volume occupied by the PhK molecule, indicating a Ca(2+)-induced conformational change. Computer-generated models, based on elements of the known structure of PhK from electron microscopy, were constructed to aid in the interpretation of the scattering data. Models containing two ellipsoids and four cylinders to represent, respectively, the lobes and bridges of the PhK complex provided theoretical scattering profiles that accurately fit the experimental data. Structural differences between the models representing the nonactivated and Ca(2+)-activated conformers of PhK are consistent with Ca(2+)-induced conformational changes in both the lobes and the interlobal bridges.


Asunto(s)
Calcio/farmacología , Fosforilasa Quinasa/química , Animales , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Conejos , Dispersión de Radiación , Rayos X
5.
PLoS One ; 6(8): e23718, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21886815

RESUMEN

BACKGROUND: Soluble endoglin, a TGF-ß receptor, plays a key role in cardiovascular physiology. Whether circulating concentrations of soluble endoglin are elevated in CKD or underlie the high risk of cardiovascular death associated with chronic kidney disease (CKD) is unknown. METHODS: Individuals with and without CKD were recruited at a single center. Estimated glomerular filtration rate (eGFR) was estimated using the modified MDRD study equation and the serum creatinine at the time of recruitment, and patients were assigned to specific CKD stage according to usual guidelines. Serum endoglin concentration was measured by ELISA and univariate and multivariable regression was used to analyze the association between eGFR or CKD stage and the concentration of soluble endoglin. RESULTS: Serum endoglin was measured in 216 patients including 118 with stage 3 or higher CKD and 9 individuals with end stage renal disease (ESRD). Serum endoglin concentration did not vary significantly with CKD stage (increase of 0.16 ng/mL per 1 stage increase in CKD, P = 0.09) or eGFR (decrease -0.06 ng/mL per 10 mL/min/1.73 m(2) increase in GFR, P = 0.12), and was not higher in individuals with ESRD than in individuals with preserved renal function (4.2±1.1 and 4.3±1.2 ng/mL, respectively). Endoglin concentration was also not significantly associated with urinary albumin excretion. CONCLUSIONS: Renal function is not associated with the circulating concentration of soluble endoglin. Elevations in soluble endoglin concentration are unlikely to contribute to the progression of CKD or the predisposition of individuals with CKD to develop cardiovascular disease.


Asunto(s)
Antígenos CD/sangre , Receptores de Superficie Celular/sangre , Insuficiencia Renal Crónica/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/etiología , Estudios de Casos y Controles , Progresión de la Enfermedad , Endoglina , Humanos , Fallo Renal Crónico/sangre , Fallo Renal Crónico/complicaciones , Persona de Mediana Edad , Receptores de Factores de Crecimiento Transformadores beta , Insuficiencia Renal Crónica/complicaciones , Adulto Joven
6.
ACS Appl Mater Interfaces ; 2(8): 2198-205, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20735091

RESUMEN

Lignocellulosic biomass offers economic and environmental advantages over corn starch for biofuels production. However, its fractionation currently requires energy-intensive pretreatments, due to the lignin chemical resistance and complex cell wall structure. Recently, ionic liquids have been used to dissolve biomass at high temperatures. In this study, thin sections of poplar wood were swollen by ionic liquid (1-ethyl-3-methylimidazolium acetate) pretreatment at room temperature. The samples contract when rinsed with deionized water. The controlled expansion and contraction of the wood structure can be used to incorporate enzymes and catalysts deep into the wood structure for improved pretreatments and accelerated cellulose hydrolysis. As a proof of concept, silver and gold nanoparticles of diameters ranging from 20 to 100 nm were incorporated at depths up to 4 mum. Confocal surface-enhanced Raman images at different depths show that a significant number of nanoparticles were incorporated into the pretreated sample, and they remained on the samples after rinsing. Quantitative X-ray fluorescence microanalyses indicate that the majority of nanoparticle incorporation occurs after an ionic liquid pretreatment of less than 1 h. In addition to improved pretreatments, the incorporation of materials and chemicals into wood and paper products enables isotope tracing, development of new sensing, and imaging capabilities.


Asunto(s)
Biocombustibles , Imidazoles/química , Nanopartículas , Populus/química , Temperatura , Microanálisis por Sonda Electrónica , Fluorescencia , Lignina/química , Microscopía Electrónica de Rastreo , Papel , Sulfadiazina de Plata/química , Solventes/química , Espectrometría Raman , Residuos
7.
Blood ; 107(5): 1908-15, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16254142

RESUMEN

Goodpasture syndrome is an autoimmune vascular disease associated with kidney and lung failure, with pathogenic circulating autoantibodies targeted to a set of discontinuous epitope sequences within the noncollagenous domain-1 (NC1) of the alpha3 chain of type IV collagen (alpha3(IV)NC1), the Goodpasture autoantigen. We demonstrate that basement membrane extracted NC1 domain preparations from Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio do not bind Goodpasture autoantibodies, while Xenopus laevis, chicken, mouse and human alpha3(IV)NC1 domains bind autoantibodies. The alpha3(IV) chain is not present in C elegans and Drosophila melanogaster, but is first detected in the Danio rerio. Interestingly, native Danio rerio alpha3(IV)NC1 does not bind Goodpasture autoantibodies. Next, we cloned, sequenced, and generated recombinant Danio rerio alpha3(IV)NC1 domain. In contrast to recombinant human alpha3(IV)NC1 domain, there was complete absence of autoantibody binding to recombinant Danio rerio alpha3(IV)NC1. Three-dimensional molecular modeling from existing x-ray coordinates of human NC1 domain suggest that evolutionary alteration of electrostatic charge and polarity due to the emergence of critical serine, aspartic acid, and lysine residues, accompanied by the loss of asparagine and glutamine, contributes to the emergence of the 2 major Goodpasture epitopes on the human alpha3(IV)NC1 domain, as it evolved from the Danio rerio over 450 million years.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Colágeno Tipo IV/inmunología , Epítopos/inmunología , Evolución Molecular , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/genética , Especificidad de Anticuerpos/inmunología , Autoantígenos/genética , Colágeno Tipo IV/genética , Mapeo Epitopo/métodos , Epítopos/genética , Humanos , Ratones , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Homología Estructural de Proteína , Pez Cebra/genética , Pez Cebra/inmunología
8.
Proc Natl Acad Sci U S A ; 100(5): 2380-5, 2003 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-12591946

RESUMEN

Using small-angle x-ray scattering, we have observed the cGMP-induced elongation of an active, cGMP-dependent, monomeric deletion mutant of cGMP-dependent protein kinase (Delta(1-52)PKG-I beta). On saturation with cGMP, the radius of gyration of Delta(1-52)PKG-I beta increases from 29.4 +/- 0.1 A to 40.1 +/- 0.7 A, and the maximum linear dimension increases from 90 A +/- 10% to 130 A +/- 10%. The elongation is due to a change in the interaction between structured regulatory (R) and catalytic (C) domains. A model of cGMP binding to Delta(1-52)PKG-I beta indicates that elongation of Delta(1-52)PKG-I beta requires binding of cGMP to the low-affinity binding site of the R domain. A comparison with cAMP-dependent protein kinase suggests that both elongation and activation require cGMP binding to both sites; cGMP binding to the low-affinity site therefore seems to be a necessary, but not sufficient, condition for both elongation and activation of Delta(1-52)PKG-I beta. We also predict that there is little or no cooperativity in cGMP binding to the two sites of Delta(1-52)PKG-I beta under the conditions used here. Results obtained by using the Delta(1-52)PKG-I beta monomer indicate that a previously observed elongation of PKG-I alpha is consistent with a pure change in the interaction between the R domain and the C domain, without alteration of the dimerization interaction. This study has revealed important features of molecular mechanisms in the biochemical network describing PKG-I beta activation by cGMP, yielding new insight into ligand activation of cyclic nucleotide-dependent protein kinases, a class of regulatory proteins that is key to many cellular processes.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/química , GMP Cíclico/metabolismo , Sitios de Unión , Fenómenos Biofísicos , Biofisica , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , ADN Complementario/metabolismo , Dimerización , Activación Enzimática , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Dispersión de Radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA