RESUMEN
Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.
Asunto(s)
División del ADN , ADN , ADN/metabolismo , ADN/química , Dominio Catalítico , Modelos Moleculares , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/química , Humanos , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Edición Génica , Sistemas CRISPR-CasRESUMEN
Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.
Asunto(s)
Diferenciación Celular , Factores de Transcripción , Humanos , Cromatina , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Factores de Transcripción/metabolismo , Atlas como AsuntoRESUMEN
Tn7-like transposons have co-opted CRISPR systems, including class 1 type I-F, I-B, and class 2 type V-K. Intriguingly, although these CRISPR-associated transposases (CASTs) undergo robust CRISPR RNA (crRNA)-guided transposition, they are almost never found in sites targeted by the crRNAs encoded by the cognate CRISPR array. To understand this paradox, we investigated CAST V-K and I-B systems and found two distinct modes of transposition: (1) crRNA-guided transposition and (2) CRISPR array-independent homing. We show distinct CAST systems utilize different molecular mechanisms to target their homing site. Type V-K CAST systems use a short, delocalized crRNA for RNA-guided homing, whereas type I-B CAST systems, which contain two distinct target selector proteins, use TniQ for RNA-guided DNA transposition and TnsD for homing to an attachment site. These observations illuminate a key step in the life cycle of CAST systems and highlight the diversity of molecular mechanisms mediating transposon homing.
Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Elementos Transponibles de ADN/fisiología , ADN Bacteriano/metabolismo , ARN Guía de Kinetoplastida , Transposasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Edición Génica , Recombinación Genética , Transposasas/genéticaRESUMEN
Canonical prokaryotic type I CRISPR-Cas adaptive immune systems contain a multicomponent effector complex called Cascade, which degrades large stretches of DNA via Cas3 helicase-nuclease activity. Recently, a highly precise subtype I-F1 CRISPR-Cas system (HNH-Cascade) was found that lacks Cas3, the absence of which is compensated for by the insertion of an HNH endonuclease domain in the Cas8 Cascade component. Here, we describe the cryo-EM structure of Selenomonas sp. HNH-Cascade (SsCascade) in complex with target DNA and characterize its mechanism of action. The Cascade scaffold is complemented by the HNH domain, creating a ring-like structure in which the unwound target DNA is precisely cleaved. This structure visualizes a unique hybrid of two extensible biological systems-Cascade, an evolutionary platform for programmable DNA effectors, and an HNH nuclease, an adaptive domain with a spectrum of enzymatic activity.
Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , División del ADN , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , ADN/metabolismo , ADN/genética , ADN/química , Dominios Proteicos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Relación Estructura-Actividad , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Unión ProteicaRESUMEN
To spread, transposons must integrate into target sites without disruption of essential genes while avoiding host defense systems. Tn7-like transposons employ multiple mechanisms for target-site selection, including protein-guided targeting and, in CRISPR-associated transposons (CASTs), RNA-guided targeting. Combining phylogenomic and structural analyses, we conducted a broad survey of target selectors, revealing diverse mechanisms used by Tn7 to recognize target sites, including previously uncharacterized target-selector proteins found in newly discovered transposable elements (TEs). We experimentally characterized a CAST I-D system and a Tn6022-like transposon that uses TnsF, which contains an inactivated tyrosine recombinase domain, to target the comM gene. Additionally, we identified a non-Tn7 transposon, Tsy, encoding a homolog of TnsF with an active tyrosine recombinase domain, which we show also inserts into comM. Our findings show that Tn7 transposons employ modular architecture and co-opt target selectors from various sources to optimize target selection and drive transposon spread.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Elementos Transponibles de ADN , Plásmidos , Elementos Transponibles de ADN/genética , Recombinasas/genética , Tirosina/genéticaRESUMEN
Endosymbiotic bacteria have evolved intricate delivery systems that enable these organisms to interface with host biology. One example, the extracellular contractile injection systems (eCISs), are syringe-like macromolecular complexes that inject protein payloads into eukaryotic cells by driving a spike through the cellular membrane. Recently, eCISs have been found to target mouse cells1-3, raising the possibility that these systems could be harnessed for therapeutic protein delivery. However, whether eCISs can function in human cells remains unknown, and the mechanism by which these systems recognize target cells is poorly understood. Here we show that target selection by the Photorhabdus virulence cassette (PVC)-an eCIS from the entomopathogenic bacterium Photorhabdus asymbiotica-is mediated by specific recognition of a target receptor by a distal binding element of the PVC tail fibre. Furthermore, using in silico structure-guided engineering of the tail fibre, we show that PVCs can be reprogrammed to target organisms not natively targeted by these systems-including human cells and mice-with efficiencies approaching 100%. Finally, we show that PVCs can load diverse protein payloads, including Cas9, base editors and toxins, and can functionally deliver them into human cells. Our results demonstrate that PVCs are programmable protein delivery devices with possible applications in gene therapy, cancer therapy and biocontrol.
Asunto(s)
Membrana Celular , Sistemas de Liberación de Medicamentos , Células Eucariotas , Photorhabdus , Proteínas , Animales , Humanos , Ratones , Membrana Celular/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Photorhabdus/química , Photorhabdus/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Toxinas Biológicas/metabolismo , Proteínas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Transporte de ProteínasRESUMEN
RNA-guided systems, which use complementarity between a guide RNA and target nucleic acid sequences for recognition of genetic elements, have a central role in biological processes in both prokaryotes and eukaryotes. For example, the prokaryotic CRISPR-Cas systems provide adaptive immunity for bacteria and archaea against foreign genetic elements. Cas effectors such as Cas9 and Cas12 perform guide-RNA-dependent DNA cleavage1. Although a few eukaryotic RNA-guided systems have been studied, including RNA interference2 and ribosomal RNA modification3, it remains unclear whether eukaryotes have RNA-guided endonucleases. Recently, a new class of prokaryotic RNA-guided systems (termed OMEGA) was reported4,5. The OMEGA effector TnpB is the putative ancestor of Cas12 and has RNA-guided endonuclease activity4,6. TnpB may also be the ancestor of the eukaryotic transposon-encoded Fanzor (Fz) proteins4,7, raising the possibility that eukaryotes are also equipped with CRISPR-Cas or OMEGA-like programmable RNA-guided endonucleases. Here we report the biochemical characterization of Fz, showing that it is an RNA-guided DNA endonuclease. We also show that Fz can be reprogrammed for human genome engineering applications. Finally, we resolve the structure of Spizellomyces punctatus Fz at 2.7 Å using cryogenic electron microscopy, showing the conservation of core regions among Fz, TnpB and Cas12, despite diverse cognate RNA structures. Our results show that Fz is a eukaryotic OMEGA system, demonstrating that RNA-guided endonucleases are present in all three domains of life.
Asunto(s)
Quitridiomicetos , Endonucleasas , Eucariontes , Proteínas Fúngicas , Edición Génica , ARN , Humanos , Archaea/genética , Archaea/inmunología , Bacterias/genética , Bacterias/inmunología , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas , Elementos Transponibles de ADN/genética , Endonucleasas/química , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Eucariontes/enzimología , Edición Génica/métodos , ARN/genética , ARN/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Evolución Molecular , Secuencia Conservada , Quitridiomicetos/enzimologíaRESUMEN
RNA-guided systems, such as CRISPR-Cas, combine programmable substrate recognition with enzymatic function, a combination that has been used advantageously to develop powerful molecular technologies1,2. Structural studies of these systems have illuminated how the RNA and protein jointly recognize and cleave their substrates, guiding rational engineering for further technology development3. Recent work identified a new class of RNA-guided systems, termed OMEGA, which include IscB, the likely ancestor of Cas9, and the nickase IsrB, a homologue of IscB lacking the HNH nuclease domain4. IsrB consists of only around 350 amino acids, but its small size is counterbalanced by a relatively large RNA guide (roughly 300-nt ωRNA). Here, we report the cryogenic-electron microscopy structure of Desulfovirgula thermocuniculi IsrB (DtIsrB) in complex with its cognate ωRNA and a target DNA. We find the overall structure of the IsrB protein shares a common scaffold with Cas9. In contrast to Cas9, however, which uses a recognition (REC) lobe to facilitate target selection, IsrB relies on its ωRNA, part of which forms an intricate ternary structure positioned analogously to REC. Structural analyses of IsrB and its ωRNA as well as comparisons to other RNA-guided systems highlight the functional interplay between protein and RNA, advancing our understanding of the biology and evolution of these diverse systems.
Asunto(s)
ADN , Desoxirribonucleasa I , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/ultraestructura , ADN/química , ADN/metabolismo , ADN/ultraestructura , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , ARN Guía de Kinetoplastida/ultraestructura , Microscopía por Crioelectrón , Proteínas Asociadas a CRISPR/químicaRESUMEN
A number of endogenous genes in the human genome encode retroviral gag-like proteins, which were domesticated from ancient retroelements. The paraneoplastic Ma antigen (PNMA) family members encode a gag-like capsid domain, but their ability to assemble as capsids and traffic between cells remains mostly uncharacterized. Here, we systematically investigate human PNMA proteins and find that a number of PNMAs are secreted by human cells. We determine that PNMA2 forms icosahedral capsids efficiently but does not naturally encapsidate nucleic acids. We resolve the cryoelectron microscopy (cryo-EM) structure of PNMA2 and leverage the structure to design engineered PNMA2 (ePNMA2) particles with RNA packaging abilities. Recombinantly purified ePNMA2 proteins package mRNA molecules into icosahedral capsids and can function as delivery vehicles in mammalian cell lines, demonstrating the potential for engineered endogenous capsids as a nucleic acid therapy delivery modality.
Asunto(s)
Antígenos de Neoplasias , Cápside , Proteínas del Tejido Nervioso , Animales , Humanos , ARN Mensajero/genética , Microscopía por Crioelectrón , MamíferosAsunto(s)
Betacoronavirus/aislamiento & purificación , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , ARN Viral/análisis , Betacoronavirus/genética , COVID-19 , Sistemas CRISPR-Cas , Técnicas de Laboratorio Clínico/métodos , Humanos , Pandemias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Sensibilidad y EspecificidadRESUMEN
Reverse transcription has frequently been co-opted for cellular functions and in prokaryotes is associated with protection against viral infection, but the underlying mechanisms of defense are generally unknown. Here, we show that in the DRT2 defense system, the reverse transcriptase binds a neighboring pseudoknotted noncoding RNA. Upon bacteriophage infection, a template region of this RNA is reverse transcribed into an array of tandem repeats that reconstitute a promoter and open reading frame, allowing expression of a toxic repetitive protein and an abortive infection response. Biochemical reconstitution of this activity and cryo-electron microscopy provide a molecular basis for repeat synthesis. Gene synthesis from a noncoding RNA is a previously unknown mode of genetic regulation in prokaryotes.
Asunto(s)
ADN Complementario , Klebsiella pneumoniae , Regiones Promotoras Genéticas , ARN no Traducido , ADN Polimerasa Dirigida por ARN , Transcripción Reversa , Siphoviridae , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/virología , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , ARN no Traducido/genética , ARN no Traducido/metabolismo , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Secuencias Repetidas en Tándem , Siphoviridae/genética , Siphoviridae/crecimiento & desarrollo , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/virología , ADN Complementario/biosíntesis , ADN Complementario/genéticaRESUMEN
Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLEs share some features with the R2 retrotransposon from Bombyx mori, which uses a target-primed reverse transcription (TPRT) mechanism, but their distinct phylogeny suggests PLEs may utilize a novel mechanism of mobilization. Using protein purified from E. coli, we report unique in vitro properties of a PLE from the green anole (Anolis carolinensis), revealing mechanistic aspects not shared by other retrotransposons. We found that reverse transcription is initiated at two adjacent sites within the transposon RNA that is not homologous to the cleaved DNA, a feature that is reflected in the genomic "tail" signature shared between and unique to PLEs. Our results for the first active PLE in vitro provide a starting point for understanding PLE mobilization and biology.
RESUMEN
Non-long terminal repeat (non-LTR) retrotransposons, or long interspersed nuclear elements (LINEs), are an abundant class of eukaryotic transposons that insert into genomes by target-primed reverse transcription (TPRT). During TPRT, a target DNA sequence is nicked and primes reverse transcription of the retrotransposon RNA. Here, we report the cryo-electron microscopy structure of the Bombyx mori R2 non-LTR retrotransposon initiating TPRT at its ribosomal DNA target. The target DNA sequence is unwound at the insertion site and recognized by an upstream motif. An extension of the reverse transcriptase (RT) domain recognizes the retrotransposon RNA and guides the 3' end into the RT active site to template reverse transcription. We used Cas9 to retarget R2 in vitro to non-native sequences, suggesting future use as a reprogrammable RNA-based gene-insertion tool.
Asunto(s)
Elementos de Nucleótido Esparcido Largo , ADN Polimerasa Dirigida por ARN , Transcripción Reversa , Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ARN/química , BombyxRESUMEN
The delivery of genetic cargo remains one of the largest obstacles to the successful translation of experimental therapies, in large part due to the absence of targetable delivery vectors. Enveloped delivery modalities use viral envelope proteins, which determine tropism and induce membrane fusion. Here we develop DIRECTED (Delivery to Intended REcipient Cells Through Envelope Design), a modular platform that consists of separate fusion and targeting components. To achieve high modularity and programmable cell type specificity, we develop multiple strategies to recruit or immobilize antibodies on the viral envelope, including a chimeric antibody binding protein and a SNAP-tag enabling the use of antibodies or other proteins as targeting molecules. Moreover, we show that fusogens from multiple viral families are compatible with DIRECTED and that DIRECTED components can target multiple delivery chassis (e.g., lentivirus and MMLV gag) to specific cell types, including primary human T cells in PBMCs and whole blood.
Asunto(s)
Anticuerpos , Lentivirus , Humanos , Fusión de Membrana , Tropismo , Proteínas del Envoltorio ViralRESUMEN
TnpB is a member of the Obligate Mobile Element Guided Activity (OMEGA) RNA-guided nuclease family, is harbored in transposons, and likely functions to maintain the transposon in genomes. Previously, it was shown that TnpB cleaves double- and single-stranded DNA substrates in an RNA-guided manner, but the biogenesis of the TnpB ribonucleoprotein (RNP) complex is unknown. Using in vitro purified apo TnpB, we demonstrate the ability of TnpB to generate guide omegaRNA (ωRNA) from its own mRNA through 5' processing. We also uncover a potential cis-regulatory mechanism whereby a region of the TnpB mRNA inhibits DNA cleavage by the RNP complex. We further expand the characterization of TnpB by examining ωRNA processing and RNA-guided nuclease activity in 59 orthologs spanning the natural diversity of the TnpB family. This work reveals a new functionality, ωRNA biogenesis, of TnpB, and characterizes additional members of this biotechnologically useful family of programmable enzymes.
Asunto(s)
Elementos Transponibles de ADN , Edición Génica , Elementos Transponibles de ADN/genética , ARN Mensajero/genética , Sistemas CRISPR-Cas , ARNRESUMEN
Microbial systems underpin many biotechnologies, including CRISPR, but the exponential growth of sequence databases makes it difficult to find previously unidentified systems. In this work, we develop the fast locality-sensitive hashing-based clustering (FLSHclust) algorithm, which performs deep clustering on massive datasets in linearithmic time. We incorporated FLSHclust into a CRISPR discovery pipeline and identified 188 previously unreported CRISPR-linked gene modules, revealing many additional biochemical functions coupled to adaptive immunity. We experimentally characterized three HNH nuclease-containing CRISPR systems, including the first type IV system with a specified interference mechanism, and engineered them for genome editing. We also identified and characterized a candidate type VII system, which we show acts on RNA. This work opens new avenues for harnessing CRISPR and for the broader exploration of the vast functional diversity of microbial proteins.
Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Minería de Datos , Edición Génica , Sistemas CRISPR-Cas/genética , Humanos , Células HEK293 , Análisis por Conglomerados , Algoritmos , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/genética , División del ADN , ARN Guía de Sistemas CRISPR-Cas , Conjuntos de Datos como Asunto , Minería de Datos/métodosRESUMEN
Many organisms have evolved specialized immune pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs) of the STAND superfamily that are ubiquitous in plants, animals, and fungi. Although the roles of NLRs in eukaryotic immunity are well established, it is unknown whether prokaryotes use similar defense mechanisms. Here, we show that antiviral STAND (Avs) homologs in bacteria and archaea detect hallmark viral proteins, triggering Avs tetramerization and the activation of diverse N-terminal effector domains, including DNA endonucleases, to abrogate infection. Cryo-electron microscopy reveals that Avs sensor domains recognize conserved folds, active-site residues, and enzyme ligands, allowing a single Avs receptor to detect a wide variety of viruses. These findings extend the paradigm of pattern recognition of pathogen-specific proteins across all three domains of life.
Asunto(s)
Archaea , Proteínas Arqueales , Bacterias , Proteínas Bacterianas , Inmunidad Innata , Proteínas NLR , Receptores de Reconocimiento de Patrones , Proteínas Virales , Animales , Archaea/inmunología , Archaea/virología , Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Bacteriófagos , Microscopía por Crioelectrón , Proteínas NLR/química , Proteínas NLR/genética , Filogenia , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/clasificación , Receptores de Reconocimiento de Patrones/genética , Proteínas Virales/química , Proteínas Virales/genéticaRESUMEN
In prokaryotes, CRISPR-Cas systems provide adaptive immune responses against foreign genetic elements through RNA-guided nuclease activity. Recently, additional genes with non-nuclease functions have been found in genetic association with CRISPR systems, suggesting that there may be other RNA-guided non-nucleolytic enzymes. One such gene from Desulfonema ishimotonii encodes the TPR-CHAT protease Csx29, which is associated with the CRISPR effector Cas7-11. Here, we demonstrate that this CRISPR-associated protease (CASP) exhibits programmable RNA-activated endopeptidase activity against a sigma factor inhibitor to regulate a transcriptional response. Cryo-electron microscopy of an active and substrate-bound CASP complex reveals an allosteric activation mechanism that reorganizes Csx29 catalytic residues upon target RNA binding. This work reveals an RNA-guided function in nature that can be leveraged for RNA-sensing applications in vitro and in human cells.
Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Deltaproteobacteria , Endopeptidasas , Proteolisis , ARN Guía de Kinetoplastida , Humanos , Microscopía por Crioelectrón , Endopeptidasas/química , Endopeptidasas/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Deltaproteobacteria/enzimología , Deltaproteobacteria/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , Factor sigma/metabolismo , Transcripción Genética , Especificidad por Sustrato , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activación EnzimáticaRESUMEN
Transposon-encoded IscB family proteins are RNA-guided nucleases in the OMEGA (obligate mobile element-guided activity) system, and likely ancestors of the RNA-guided nuclease Cas9 in the type II CRISPR-Cas adaptive immune system. IscB associates with its cognate ωRNA to form a ribonucleoprotein complex that cleaves double-stranded DNA targets complementary to an ωRNA guide segment. Although IscB shares the RuvC and HNH endonuclease domains with Cas9, it is much smaller than Cas9, mainly due to the lack of the α-helical nucleic-acid recognition lobe. Here, we report the cryo-electron microscopy structure of an IscB protein from the human gut metagenome (OgeuIscB) in complex with its cognate ωRNA and a target DNA, at 2.6-Å resolution. This high-resolution structure reveals the detailed architecture of the IscB-ωRNA ribonucleoprotein complex, and shows how the small IscB protein assembles with the ωRNA and mediates RNA-guided DNA cleavage. The large ωRNA scaffold structurally and functionally compensates for the recognition lobe of Cas9, and participates in the recognition of the guide RNA-target DNA heteroduplex. These findings provide insights into the mechanism of the programmable DNA cleavage by the IscB-ωRNA complex and the evolution of the type II CRISPR-Cas9 effector complexes.