Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 218: 115040, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521541

RESUMEN

Occupational exposure during waste sorting is associated with several health outcomes. This study obtained knowledge about the impact of work in fully automated waste sorting plants (AWSP; n = 3) vs manual waste sorting plants (MWSP; n = 3) on personal exposure (n = 71) to bioaerosols and exposure-related health effects. Personal full-shift air samples were collected using various filter-based active sampling devices that were placed in the workers' breathing zone. Personal exposure to inhalable and thoracic dust, endotoxin and microorganisms varied considerably between and within types of waste sorting plants (WSP). Workers at AWSP were on average exposed to 0.34 mg/m3 inhalable dust, 0.15 mg/m3 thoracic dust, and 51 EU/m3 endotoxins (geometric mean (GM) levels), whereas GM exposure levels at MWSP were 0.66 mg/m3 for inhalable dust, 0.44 mg/m3 for thoracic dust, and 32 EU/m3 for endotoxins. Exposure to submicronic fungal fragments did not differ between types of plants and ranged from levels below the detection limit (limit of detection, LOD) to levels in the order of 106 fragments/m3. Higher levels of fungal fragments and fungal spores were found at AWSP compared to MWSP with a GM of 2.1 × 105 spores/m3and with a GM of 1.2 × 105 spores/m3, respectively. Actinobacterial spores were found in samples from AWSP only, with exposure levels ranging from 1.9 × 104 to 1.1 × 107 spores/m3. Exposure to microbial DNA varied within and between WSP and was on average in the order of 104 copies/m3 for fungi and 105 copies/m3 for bacteria. Health symptoms, such as sneezing, congested nose and runny nose were significantly more common among exposed workers compared to the unexposed control group.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Humanos , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Endotoxinas , Plantas , Polvo/análisis , Microbiología del Aire
2.
Environ Res ; 216(Pt 2): 114642, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306875

RESUMEN

Pigeon breeding is associated with exposure to airborne microorganisms and endotoxin and with symptoms of the airways. Antibiotic resistance is a threat to human health. Some pigeons participate in national and international indoor exhibitions. This study aims to obtain knowledge about the potential human exposure to dust, endotoxin, fungi, and bacteria including the methicillin-resistant Staphylococcus aureus (MRSA) in a pigeon exhibition in Denmark. In walking areas for visitors, airborne microorganisms in different size fractions able to enter the airways were sampled and following identified. The average concentrations were: 5000 cfu fungi/m3, 1.8 × 104 cfu bacteria/m3, 37 endotoxin units/m3, and 0.18 mg dust/m3 air with the highest concentrations in-between rows with pigeon cages. The fungal species Wallemia sp. and Aspergillus versicolor and the bacterial species S. equorum and S. aureus were found in high concentrations. MRSA spa type t034 described to be associated with livestock was found in the air. Most of the S. aureus was present in the size fraction of 1.1-2.1 µm, which are particles able to enter the human terminal bronchi. In conclusion, fungi, bacteria, and endotoxin, respectively, were found in concentrations 10, 2000, and 200 times higher than outdoor references. The airborne bacteria in the exhibition were mainly species found previously in pigeon coops showing that the pigeons are the sources of exposure. The presence of airborne MRSA in the pigeon exhibition highlights the importance of also considering this environment as a potential place of exchange of resistant bacteria between animals and between animals and humans.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Exposición Profesional , Animales , Humanos , Polvo , Columbidae , Endotoxinas/análisis , Staphylococcus aureus , Exposición Profesional/análisis , Bacterias , Hongos , Microbiología del Aire
3.
Environ Res ; 204(Pt D): 112404, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34838572

RESUMEN

Pigeon breeding is associated with symptoms of the airways. The aim of this study is to illuminate the bacteriological and toxicological characteristics of airborne dust in pigeon coops. Airborne dust was sampled in 31 urban pigeon coops with homing and fancy pigeons, and following the dust was characterized. In total 141 different bacterial species were identified using MALDI-TOF MS, and of these 11 species are classified in risk group 2. Of the cultivable bacteria, Staphylococcus equorum was present in the highest concentration. Microorganisms in the dust were able to form biofilm, and the amount correlated positively with the number of bacteria. Next generation sequencing showed 180 genera with Acinetobacter in highest reads. On average 999 ± 225 ZOTUs were observed per sample with a Shannon-Wiener biodiversity index of 6.17 ± 0.24. Of the identified species the following have previously been suggested as causative agents of extrinsic allergic alveolitis: Alcaligenes faecalis, Bacillus subtilis, Pantoea agglomerans, Sphingobacterium spiritivorum, Thermoactinomyces sp., and Streptomyces albus. Staphylococcus was present on particles with sizes between 1.1 and > 7.0 µm with a geometric mean diameter of particles on 4.7 ± 1.1 µm. Concentrations of airborne endotoxin and dust were elevated compared to references, and the geometric mean concentrations were 102 EU/m3 and 1.07 mg dust/m3, respectively. Upon exposure to the airborne dust human granulocytes produced Reactive Oxidative Species during the first 5 min, and then no further reaction was observed. The concentrations of bacteria in general, Staphylococcus spp., and endotoxin and biodiversity were associated significantly with season, temperature and/or relative humidity, but not with type or density of pigeons. The bacterial composition and biodiversity indices were not affected by type of pigeon. In conclusion, the exposure to bacteria and endotoxin in pigeon houses should not be neglected in the evaluation of causative agents of airways symptoms among pigeon breeders.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Microbiología del Aire , Contaminantes Ocupacionales del Aire/análisis , Animales , Columbidae , Estudios Transversales , Polvo/análisis , Endotoxinas/análisis , Exposición Profesional/análisis , Medición de Riesgo
4.
Artículo en Inglés | MEDLINE | ID: mdl-33820768

RESUMEN

Aspergillus niger is an opportunistic pathogen commonly found in a variety of indoor and outdoor environments. An environmental isolate of A. niger from a pig farm was resistant to itraconazole, and in-depth investigations were conducted to better understand cellular responses that occur during growth when this pathogen is exposed to an antifungal. Using a combination of cultivation techniques, antibiotic stress testing, and label-free proteomics, this study investigated the physiological and metabolic responses of A. niger to sublethal levels of antifungal stress. Challenging A. niger with itraconazole inhibited growth, and the MIC was estimated to be > 16 mg · liter-1 Through the proteome analysis, 1,305 unique proteins were identified. During growth with 2 and 8 mg · liter-1 itraconazole, a total of 91 and 50 proteins, respectively, were significantly differentially expressed. When challenged with itraconazole, A. niger exhibited decreased expression of peroxidative enzymes, increased expression of an ATP-binding cassette (ABC) transporter most likely involved as an azole efflux pump, and inhibited ergosterol synthesis; however, several ergosterol biosynthesis proteins increased in abundance. Furthermore, reduced expression of proteins involved in the production of ATP and reducing power from both the tricarboxylic acid (TCA) and glyoxylate cycles was observed. The mode of action of triazoles in A. niger therefore appears more complex than previously anticipated, and these observations may help highlight future targets for antifungal treatment.


Asunto(s)
Aspergillus niger , Itraconazol , Animales , Antifúngicos/farmacología , Azoles , Farmacorresistencia Fúngica/genética , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Porcinos
5.
Environ Res ; 192: 110325, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068575

RESUMEN

Work in greenhouses entails exposure to airborne fungi and bacteria. The aims of this study are to obtain knowledge about whether exposure to fungal and bacterial genera and species during work in a cucumber greenhouse is affected by work tasks, and whether a cohort of greenhouse workers' serum levels of serum amyloid A (SAA) and C-reactive protein (CRP), biomarkers of systemic inflammation, are associated with this. Data on personal exposure to airborne fungal and bacterial species measured over 4 years as well as serum levels of SAA and CRP sampled over two years were analyzed. For data analysis, the main work tasks were grouped into three different groups, called 'grouped work task'. Microorganisms were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) and next-generation sequencing (NGS). The 'daily exposure' of greenhouse workers' were as follows: 4.8 × 104 CFU bacteria/m3, 1.4 × 106 CFU fungi/m3, and 392 EU/m3 of endotoxin. Workers were exposed to many different microbial species including several species within the genera Acinetobacter, Bacillus, Microbacterium, Pseudomonas, Staphylococcus, and Streptomyces. The genera Ralstonia and Cladosporium were found in most samples. The exposure levels as well as the microbial composition were associated significantly with grouped work task and season with high exposures during tasks in close contact with mature and old plants and in the autumn. CRP and SAA levels were also associated with exposure level and grouped work tasks. The Shannon-Wiener indices were not different in the 3 'grouped work tasks'. Several specific species including e.g. Halomonas elongata, Stenotrophomonas maltophilia, Podosphaera fusca, and Wallemia spp. were found frequently or in high concentrations in the exposures associated with the highest levels of CRP and SAA. The microorganisms S. maltophilia, P. fusca, and Wallemia spp. were also found on the cucumber plant leaves. In conclusion, both exposure level and the species composition seem to have an effect on the serum levels of CRP and SAA of exposed workers. The greenhouse workers were exposed to only a few species characterized as human pathogens.


Asunto(s)
Contaminantes Ocupacionales del Aire , Cucumis sativus , Exposición Profesional , Microbiología del Aire , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Ascomicetos , Biomarcadores , Estudios de Cohortes , Monitoreo del Ambiente , Hongos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inflamación , Exposición Profesional/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Toxicol Appl Pharmacol ; 386: 114830, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734322

RESUMEN

Nanomaterial (NM) characteristics may affect the pulmonary toxicity and inflammatory response, including specific surface area, size, shape, crystal phase or other surface characteristics. Grouping of TiO2 in hazard assessment might be challenging because of variation in physicochemical properties. We exposed C57BL/6 J mice to a single dose of four anatase TiO2 NMs with various sizes and shapes by intratracheal instillation and assessed the pulmonary toxicity 1, 3, 28, 90 or 180 days post-exposure. The quartz DQ12 was included as benchmark particle. Pulmonary responses were evaluated by histopathology, electron microscopy, bronchoalveolar lavage (BAL) fluid cell composition and acute phase response. Genotoxicity was evaluated by DNA strand break levels in BAL cells, lung and liver in the comet assay. Multiple regression analyses were applied to identify specific TiO2 NMs properties important for the pulmonary inflammation and acute phase response. The TiO2 NMs induced similar inflammatory responses when surface area was used as dose metrics, although inflammatory and acute phase response was greatest and more persistent for the TiO2 tube. Similar histopathological changes were observed for the TiO2 tube and DQ12 including pulmonary alveolar proteinosis indicating profound effects related to the tube shape. Comparison with previously published data on rutile TiO2 NMs indicated that rutile TiO2 NMs were more inflammogenic in terms of neutrophil influx than anatase TiO2 NMs when normalized to total deposited surface area. Overall, the results suggest that specific surface area, crystal phase and shape of TiO2 NMs are important predictors for the observed pulmonary effects of TiO2 NMs.


Asunto(s)
Reacción de Fase Aguda/inducido químicamente , Nanoestructuras/toxicidad , Neumonía/inducido químicamente , Proteinosis Alveolar Pulmonar/inducido químicamente , Titanio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Relación Dosis-Respuesta a Droga , Femenino , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Neumonía/patología , Alveolos Pulmonares/efectos de los fármacos
7.
Environ Res ; 183: 109177, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32006769

RESUMEN

Bioaerosol exposure is associated with health problems. The aim of this study is to evaluate whether it is possible to assess the risks posed by waste collection workers' exposure through identification and characterization of bacterial and fungal species, to which the workers are exposed. Using MALDI-TOF MS, microorganisms in waste collection workers' exposure through air, hand, and contact with the steering wheel were identified. Fungi found in high concentrations from the workers' exposure were characterized for the total inflammatory potential (TIP), cytotoxicity, and biofilm-forming capacity. In total, 180 different bacterial and 37 different fungal species in the workers' exposure samples were identified. Some of them belong to Risk Group 2, e.g. Escherichia coli, Klebsiella oxytoca, Staphylococcus aureus, and Aspergillus fumigatus, some have been associated with occupational health problems e.g. Penicillium citrinum and P. glabrum and some are described as emerging pathogens e.g. Aureobasidium pullulans. The TIP of fungal species was dose-dependent. High TIP values were found for Penicillium italicum, P. brevicompactum, P. citrinum, and P. glabrum. Several species were cytotoxic, e.g. A. niger and P. expansum, while some, e.g. P. chrysogenum, did not affect the cell viability. Based on waste workers' average inhalation rate, they inhaled up to 2.3 × 104 cfu of A. niger, 7.4 × 104 cfu of P. expansum, and 4.0 × 106 cfu of P. italicum per work day. Some species e.g. A. niger and P. citrinum were able to form biofilm. In conclusion, the workers were exposed to several species of microorganisms of which some to varying degrees can be evaluated concerning risk. Thus, some microorganisms belong to Risk Group 2, and some are described as causing agents of occupational health problems, emerging pathogens, or intrinsically antibiotic resistant. For some other species very little is known. The TIP, cytotoxicity, and ability to form biofilm of the dominating fungi support and expand previous findings. These parameters depended on the species and the dose, thus highlighting the importance of species identification and exposure level in the risk assessment of exposure.


Asunto(s)
Microbiología del Aire , Contaminantes Ocupacionales del Aire , Exposición Profesional , Residuos Sólidos , Bacterias , Monitoreo del Ambiente , Hongos , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Ecotoxicol Environ Saf ; 205: 111365, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32977286

RESUMEN

Work in wastewater treatment plants (WWTPs) can be associated with respiratory symptoms and diarrhea. The aim of this study was to obtain knowledge about WWTP workers' exposure to airborne bacteria and endotoxin, and the inflammatory potential (TIP) of their exposure, and to evaluate the risk posed by the exposure by 1) calculating a hazard index and relating the exposure to suggested occupational exposure limits (OELs), 2) estimating the potential deposition of bacteria in the airways, 3) relating it to the risk group classification of bacteria by the European Union, and 4) estimating the TIP of the personal exposure. A cohort of 14 workers were followed over one year. Bioaerosols were collected using personal and stationary samplers in a grid chamber house and an aeration tank area. Airborne bacteria were identified using (MALDI-TOF MS), and TIP of exposure was measured using HL-60 cells. A significant effect of season, work task, and person was found on the personal exposure. A hazard index based on exposure levels indicates that the risk caused by inhalation is low. In relation to suggested OELs, 14% and 34% of the personal exposure were exceeded for endotoxin (≥50 EU/m3) and bacteria (≥500 CFU/m3). At least 70% of the airborne bacteria in the grid chamber house and the aeration tank area could potentially deposit in the lower respiratory tract. From the personal samples, three of 131 bacterial species, Enterobacter cloacae, Staphylococcus aureus, and Yersinia enterocolitica are classified within Risk Group 2. Seven additional bacteria from the stationary samples belong to Risk Group 2. The bacterial species composition was affected significantly by season (p = 0.014) and by sampling type/area (p = 0.001). The TIP of WWTP workers' exposure was higher than of a reference sample, and the highest TIP was measured in autumn. TIP of personal exposure correlated with bacterial exposure. Based on the geometric average exposures to endotoxin (9.2 EU/m3) and bacteria (299 CFU/m3) and based on the calculated hazard index, the risk associated with exposure is low. However, since 43 of 106 exposure levels exceed suggested OELs, the TIP of exposure was elevated and associated with bacterial exposure, and WWTP workers were exposed to pathogenic bacteria, a continued focus on preventive measures is important. The identification of bacteria to species level in personal samples was necessary in the risk assessment, and measurement of the microbial composition made the source tracking possible.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Exposición Profesional/análisis , Instalaciones de Eliminación de Residuos , Eliminación de Residuos Líquidos , Microbiología del Aire , Bacterias , Endotoxinas/análisis , Monitoreo del Ambiente/métodos , Humanos , Exposición por Inhalación/análisis , Exposición Profesional/estadística & datos numéricos , Estaciones del Año , Aguas Residuales/microbiología
9.
Environ Res ; 171: 558-567, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771719

RESUMEN

The airborne fungal and bacterial species present in pig farm dust have not been well characterised even though these bioaerosols are known to cause inflammation and other airway maladies. In this study, the microbial species and composition in airborne dust within and between pig farms were investigated. Passively sedimenting dust from six pig farms were collected using electrostatic dust collectors. The bacterial and fungal species were identified using matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and next generation sequencing (NGS). Dust samples taken within the same stable section revealed high resemblance and stability. Constrained statistical analysis of the microbial community compositions indicated that the types of stable did not appear to have a great effect on the bacterial and fungal ß-diversity. In contrast to this, the farm from which samples were taken appeared to have the greatest effect on the bacterial ß-diversity, but this trend was not observed for the fungal ß-diversity. The most common bacteria and fungi according to NGS data were anaerobes typically associated with the pig intestinal tract and yeasts respectively. Bacterial sedimentation varied at a rate between 103 and 109 CFU/m2/day, with the most common species after aerobic incubation being Aerococcus viridans and Staphylococcus equorum, while Clostridium perfringens and Staphylococcus simulans were the most common species after anaerobic incubation. A total of 28 different species of bacteria and fungi were classifiable as pathogens. In conclusion, the biodiversity in pig farm dust shows a high diversity of bacterial species. However, samples from the same stable section resembled each other, but also different sections within the same farm also resembled each other, thus indicating a high degree of community stability in the dust source. In regards to fungal identification, the biodiversity was observed to be similar between samples from different stable sections and farms, indicating a higher degree of similarities in the mycobiomes found across pig farms studied.


Asunto(s)
Microbiología del Aire , Biodiversidad , Polvo , Monitoreo del Ambiente , Animales , Bacterias , Granjas , Hongos , Porcinos
10.
Environ Res ; 160: 282-291, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29035784

RESUMEN

The aim of this study was to obtain knowledge about concentrations of Staphylococcus aureus, MRSA (methicillin-resistant S. aureus), and other Staphylococcus species in indoor air in Greater Copenhagen and about factors affecting the concentrations. The effects of season, temperature, relative humidity, air change rate (ACR), other bacterial genera, area per occupant, and presence of S. aureus-positive occupants were studied. In samples from 67 living rooms, S. hominis, S. warneri, S. epidermidis, and S. capitis were found in 13-25%; S. saprophyticus, S. cohnii, and S. pasteuri in 5-10%; and S. lugdunensis, S. haemolyticus, S. caprae, S. equorum, S. kloosii, S. pettenkoferi, S. simulans, and S. xylosus in less than 3%. Staphylococcus aureus were found in two of 67 living rooms: spa type t034 (an MRSA) was recovered from a farmhouse, while spa type t509 was found in an urban home. Two species, S. equorum and S. kloosii, were found only in the farmhouse. Staphylococcus was significantly associated with season with lowest concentration and richness in winter. Genera composition was associated with ACR with smaller fractions of Staphylococcus at higher ACR, while richness was significantly and negatively associated with area per occupant. Concentration of Staphylococcus correlated positively with the total concentration of bacteria, but negatively with the total concentration of other bacteria. The concentration of Staphylococcus was not significantly associated with concentrations of the other abundant genera Bacillus, Kocuria, and Micrococcus. In offices with S. aureus-positive occupants, airborne S. aureus was not found. In conclusion, Staphylococcus species constitute a considerable proportion of the airborne bacteria in the studied homes and offices. However, both S. aureus and MRSA had very low prevalence during all seasons. Thus, transmission of S. aureus and MRSA through the air in living rooms in Copenhagen is expected to be limited. The negative associations between ACR and the fraction Staphylococcus constituted out of total bacteria, and between area per occupant and Staphylococcus richness indicate that it might be possible to affect the presence of airborne Staphylococcus in homes.


Asunto(s)
Microbiología del Aire , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Bacillus/aislamiento & purificación , Dinamarca , Vivienda/estadística & datos numéricos , Humanos , Micrococcus/aislamiento & purificación , Población Rural , Estaciones del Año , Infecciones Estafilocócicas/transmisión , Población Urbana , Tiempo (Meteorología)
11.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28970219

RESUMEN

Transmission of methicillin-resistant Staphylococcus aureus (MRSA) from animals to humans is of great concern due to the implications for human health and the health care system. The objective was to investigate the frequency and duration of MRSA carriage in human volunteers after a short-term exposure in a swine farm. The experimental study included 34 human volunteers staying 1 h in a MRSA-positive swine farm in four trials. In two of the trials, the influence of farm work involving pig contact was studied using a crossover design. The quantities of MRSA in nasal swabs, throat swabs, and air samples were measured at different time points and analyzed in relation to relevant covariates. This investigation showed that, overall, 94% of the volunteers acquired MRSA during the farm visit. Two hours after the volunteers left the stable, the nasal MRSA count had declined to unquantifiable levels in 95% of the samples. After 48 h, 94% of the volunteers were MRSA-negative. Nasal MRSA carriage was positively correlated to personal exposure to airborne MRSA and farm work involving pig contact and negatively correlated to smoking. No association was observed between MRSA carriage and face touching behavior, nasal methicillin-susceptible Staphylococcus aureus (MSSA) carriage, age, or gender. The increase in human MRSA carriage among the volunteers with pig contact seems to be dependent on the increased concentration of airborne MRSA of the surrounding air and not directly on physical contact with pigs. MRSA was not detected in any of the throat samples.IMPORTANCE The experimental approach made it possible to elucidate the contributions of airborne MRSA levels and farm work to nasal MRSA carriage in a swine farm. Short-term exposure to airborne MRSA poses a substantial risk for farm visitors to become nasal carriers, but the carriage is typically cleared within hours to a few days. The risk for short-term visitors to cause secondary transmissions of MRSA is most likely negligible due to the observed decline to unquantifiable levels in 95% of the nasal samples after only 2 h. The MRSA load in the nose was highly correlated to the amount of MRSA in the air and interventions to reduce the level of airborne MRSA or the use of face masks might consequently reduce nasal contamination.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones Estafilocócicas/transmisión , Infecciones Estafilocócicas/veterinaria , Enfermedades de los Porcinos/microbiología , Adulto , Animales , Portador Sano/microbiología , Granjas , Femenino , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/genética , Persona de Mediana Edad , Infecciones Estafilocócicas/microbiología , Porcinos , Adulto Joven
12.
Appl Environ Microbiol ; 82(8): 2479-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26921421

RESUMEN

In the indoor environment, people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine the immune responses associated with fungal exposure, mice are often exposed to a single species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice exposed to mixed fungal species aerosolized from fungus-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterized and compared with aerosols in homes. Aerosols containing 10(7)CFU of fungi/m(3)air were generated repeatedly from fungus-infested gypsum boards in a mouse exposure chamber. Aerosols contained Aspergillus nidulans,Aspergillus niger, Aspergillus ustus, Aspergillus versicolor,Chaetomium globosum,Cladosporium herbarum,Penicillium brevicompactum,Penicillium camemberti,Penicillium chrysogenum,Penicillium commune,Penicillium glabrum,Penicillium olsonii,Penicillium rugulosum,Stachybotrys chartarum, and Wallemia sebi They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes. Through aerosolization of fungi from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study responses to indoor fungi associated with water damage and the importance of fungal species composition.


Asunto(s)
Aerosoles , Microbiología del Aire , Exposición por Inhalación , Micosis , Animales , Modelos Animales de Enfermedad , Ratones
13.
Environ Res ; 148: 491-499, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27148672

RESUMEN

OBJECTIVES: An employee with no prior history of allergy or asthma, experienced respiratory and flu-like symptoms during production of shrimp shell powder in a seafood savory factory in Norway. We aimed to clarify the diagnosis and to identify the cause of the symptoms by specific inhalation challenge (SIC) and by characterizing the powder's biocontaminants, particle size fractions and inflammatory potential. METHODS: Respiratory and immunological responses were measured the day before and after each of four challenges with 20-150g shrimp shell powder during three consecutive days. The powder was analyzed for endotoxin, microorganisms and particle size fractions by standardized laboratory methods. Total inflammatory potential was quantified by reactive oxygen species (ROS) production in a granulocyte assay. RESULTS: The patient had elevated IgG, but not IgE, towards shrimp shell powder. 20min challenge with 150g shrimp shell powder induced 15% decrease in FVC, 23% decrease in FEV1 and increased unspecific bronchial reactivity by methacholine. Neutrophils and monocytes increased 84% and 59%, respectively, and the patient experienced temperature increase and flu-like symptoms. The shrimp shell powder contained 1118 endotoxin units/g and bacteria including Bacillus cereus, and 57% respirable size fraction when aerosolized. The ROS production was higher for shrimp shell powder than for endotoxin alone. CONCLUSIONS: Endotoxin and other bacterial components combined with a high fraction of respirable dust might be the cause of the symptoms. The patient's characteristics and response to SIC were best compatible with occupational asthma and organic dust toxic syndrome, while hypersensitivity pneumonitis could not be excluded.


Asunto(s)
Exposición por Inhalación , Enfermedades Pulmonares/etiología , Enfermedades Profesionales/etiología , Exposición Profesional , Pandalidae , Animales , Bacillus cereus/aislamiento & purificación , Polvo/análisis , Endotoxinas/análisis , Femenino , Industria de Procesamiento de Alimentos , Volumen Espiratorio Forzado , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Recuento de Leucocitos , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/fisiopatología , Persona de Mediana Edad , Enfermedades Profesionales/inmunología , Enfermedades Profesionales/fisiopatología , Pandalidae/inmunología , Polvos , Especies Reactivas de Oxígeno/análisis
14.
Environ Health ; 15: 9, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792395

RESUMEN

BACKGROUND: Occupational exposure to particles may be associated with increased inflammation of the airways. Animal experiments suggest that inhaled particles also induce a pulmonary acute phase response, leading to systemic circulation of acute phase proteins. Greenhouse workers are exposed to elevated levels of bioaerosols. The objective of this study is to assess whether greenhouse workers personal exposure to bioaerosol components was associated with serum levels of the acute phase proteins Serum Amyloid A (SAA) and C-reactive protein (CRP). METHODS: SAA and CRP levels were determined in serum sampled repeatedly from 33 greenhouse workers. Blood was drawn repeatedly on Mondays and Thursdays during work weeks. Acute phase protein levels were compared to levels in a comparison group of 42 people and related to individual exposure levels to endotoxin, dust, bacteria, fungi and ß-glucan. RESULTS: Serum levels of SAA and CRP were not significantly different in greenhouse workers and a reference group, or on the two work days. In a mixed model, SAA levels were positively associated with endotoxin exposure levels (p = 0.0007). Results for fungi were not clear. CRP levels were positively associated with endotoxin exposures (p = 0.022). Furthermore, when workers were categorized into three groups based on SAA and CRP serum levels endotoxin exposure was highest in the group with the highest SAA levels and in the group with middle and highest CRP levels. SAA and CRP levels were elevated in workers with asthma. CONCLUSION: Greenhouse workers did not have elevated serum levels of SAA and CRP compared to a reference group. However, occupational exposure to endotoxin was positively associated with serum levels of the acute phase proteins SAA and CRP. Preventive measures to reduce endotoxin exposure may be beneficial.


Asunto(s)
Reacción de Fase Aguda/sangre , Enfermedades de los Trabajadores Agrícolas/sangre , Exposición Profesional/análisis , Proteína Amiloide A Sérica/metabolismo , Adulto , Agricultura , Contaminantes Ocupacionales del Aire/sangre , Monitoreo del Ambiente/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Part Fibre Toxicol ; 13(1): 37, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357593

RESUMEN

BACKGROUND: The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. METHODS: Mice received a single intratracheal instillation of 18, 54 and 162 µg of CNT or 54, 162 and 486 µg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. RESULTS: Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. CONCLUSIONS: Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy.


Asunto(s)
Compuestos Epoxi/toxicidad , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Endotoxinas/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/patología , Ratones , Microscopía Electrónica de Rastreo
16.
Ann Occup Hyg ; 60(6): 651-68, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27098185

RESUMEN

A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors' exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers' clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×10(4) bacteria m(-3) air and 326 and 4.6×10(4) fungi m(-3) air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person's truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the highest concentrations were found in personal samples; fungal and bacterial species found in high concentrations in personal samples were also found in truck cabs, but in lower concentrations indicating that both fungi and bacteria are transported by the workers into the truck cab, and are subsequently aerosolized in the truck cab.


Asunto(s)
Microbiología del Aire , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Vehículos a Motor , Exposición Profesional/análisis , Administración de Residuos/métodos , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente , Humanos
17.
Ann Occup Hyg ; 60(7): 781-94, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27235847

RESUMEN

INTRODUCTION: Aerosolization of components when processing king crab (Paralithodes camtschaticus) and edible crab (Cancer pagurus) may cause occupational health problems when inhaled by workers. METHODS: A cross-sectional study was carried out in three king crab plants and one edible crab plant. Personal exposure measurements were performed throughout work shifts. Air was collected for measurement of tropomyosin, total protein, endotoxin, trypsin, and N-acetyl-ß-d-glucosaminidase (NAGase). T-tests and ANOVAs were used to compare the levels of exposure in the different plants and areas in the plants. RESULTS: Total protein and tropomyosin levels were highest in the edible crab plant, endotoxin levels were highest in king crab plants. King crab exposure levels were highest during raw processing. Tropomyosin levels were highest during raw king crab processing with geometric mean (GM) 9.6 versus 2.5ng m(-3) during cooked processing. Conversely, edible crab tropomyosin levels were highest during cooked processing with GM 45.4 versus 8.7ng m(-3) during raw processing. Endotoxin levels were higher in king crab plants than in the edible crab plant with GM = 6285.5 endotoxin units (EU) m(-3) versus 72 EU m(-3). In the edible crab plant, NAGase levels were highest during raw processing with GM = 853 pmol4-methylumbelliferone (MU) m(-3) versus 422 pmol4-MU m(-3) during cooked processing. Trypsin activity was found in both king crab and edible crab plants and levels were higher in raw than cooked processing. Differences in exposure levels between plants and worker groups (raw and cooked processing) were identified. CONCLUSIONS: Norwegian crab processing workers are exposed to airborne proteins, tropomyosin, endotoxins, trypsin, and NAGase in their breathing zone. Levels vary between worker groups and factories.


Asunto(s)
Aerosoles/efectos adversos , Industria de Procesamiento de Alimentos , Exposición Profesional/análisis , Mariscos , Aerosoles/análisis , Estudios Transversales , Monitoreo del Ambiente/métodos , Humanos , Exposición por Inhalación/análisis , Noruega
18.
Environ Res ; 140: 255-67, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25880607

RESUMEN

The importance of the microbial diversity of bioaerosols in relation to occupational exposure and work related health symptoms is not known. The aim of this paper is to gain knowledge on the bacterial and fungal communities in dust causing organic dust toxic syndrome (ODTS) and in reference dust not causing ODTS. Bacterial and fungal communities were described in personal exposure samples from grass seed workers developing ODTS, in dust generated from grass seeds causing ODTS and in dust generated from reference seeds not causing ODTS. Amplicon sequencing of the bacterial 16S rRNA gene and the fungal ITS region, as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) were used for identification of fungi and bacteria in personal exposure samples and in dust samples from grass seeds causing ODTS and in dust from reference grass seeds. Furthermore, activities of enzymes were measured in the same samples. The sequencing data revealed more than 150 bacterial and 25 fungal genera present in each sample. Streptomyces spp., Aspergillus fumigatus and Rhizopus microsporus were dominating in the dust causing ODTS but not in the reference dust. The dustiness in terms of Mucor sp. and R. microsporus were 100-1000 times higher for problematic seeds compared to reference seeds. The bacterial species in the dust causing ODTS included pathogenic species such as Klebsiella pneumonia and Streptomyces pneumonia, and it contained increased concentrations of total protein, serine protease, chitinase, and ß-glucosidase. Twenty-three bacterial genera covered more than 50% of the total reads in the personal and problematic seed dust. These 23 genera accounted for less than 7% of the total reads in the reference seed dust. The microbial community of the dust from the problematic seeds showed great similarities to that from the personal air samples from the workers. In conclusion, we have shown for the first time a shift in the microbial community in aerosol samples that caused ODTS compared to the reference samples that did not cause the ODTS. Furthermore, elevated enzyme activities were found in the dust causing ODTS.


Asunto(s)
Aerosoles , Microbiología del Aire , Bacterias/patogenicidad , Hongos/patogenicidad , Enfermedades Profesionales/microbiología , Análisis de Secuencia de ADN/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Bacterias/clasificación , Bacterias/aislamiento & purificación , Secuencia de Bases , Cartilla de ADN , Polvo , Hongos/clasificación , Hongos/aislamiento & purificación , Humanos , Reacción en Cadena de la Polimerasa , Estándares de Referencia
19.
Ann Occup Hyg ; 59(2): 142-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25389370

RESUMEN

BACKGROUND: Greenhouse workers are exposed to dust, endotoxin, fungi, and bacteria potentially causing airway inflammation as well as systemic symptoms. Knowledge about determinants of exposure is a prerequisite for efficient prevention through knowledge-based reduction in exposure. The objective of this study was to assess the occupational exposure in a flower greenhouse and to investigate the impact of work tasks on the intensity and variability in exposure. METHODS: Seventy-six personal full-shift exposure measurements were performed on 38 employees in a Danish flower greenhouse producing Campanula, Lavandula, Rhipsalideae, and Helleborus. The samples were gravimetrically analysed for inhalable dust. Endotoxin was assessed by the Limulus Amoebocyte Lysate test and culture-based quantification of bacteria and fungi was performed. Information on the performed tasks during sampling was extracted from the greenhouse electronic task logging system. Associations between log-transformed exposure outcomes, season, and work tasks were examined in linear mixed-effects regression with worker identity as random effect. RESULTS: Measured concentrations ranged between 0.04 and 2.41mg m(-3) for inhalable dust and between 0.84 and 1097 EU m(-3) for endotoxin exposure, with the highest mean levels measured during Lavandula and Campanula handling, respectively. Personal exposure to fungi ranged between 1.8×10(2) and 3.4×10(6) colony-forming units (CFU) m(-3) and to bacteria between 1.6×10(1) and 4.2×10(5) CFU m(-3). Exposure to dust, endotoxin, fungi, and bacteria differed between seasons. Packing Lavandula, sticking, potting, and grading Rhipsalideae, and all examined tasks related to Campanula production except sticking increased dust exposure. Endotoxin exposure was increased during sticking Campanula and pinching or packing Rhipsalideae, and fungi exposure was elevated by subtasks performed in the research and development area for Campanula, and by potting, packing/dumping Campanula. Sticking and working with subtasks in the research and development area for Campanula increased bacteria exposure. CONCLUSION: This study revealed moderate dust exposure levels compared to the levels observed in other greenhouse productions and other occupations with organic dust exposure such as farming. However, high exposures to bacteria and fungi were detected during selected tasks and the proposed health-based endotoxin exposure limit of 90 EU m(-3) was exceeded in 30% of the samples, which may have health implications for the employees. Exposure levels were found to vary depending on the tasks performed, and thereby results can be used to direct task-based initiatives to reduce workplace exposures.


Asunto(s)
Bacterias/aislamiento & purificación , Polvo/análisis , Endotoxinas/análisis , Hongos/aislamiento & purificación , Exposición por Inhalación/análisis , Exposición Profesional , Plantas , Agricultura/métodos , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Femenino , Flores , Humanos , Masculino , Plantas/microbiología , Estaciones del Año , Análisis y Desempeño de Tareas
20.
Acta Neuropsychiatr ; 27(3): 189-94, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25697068

RESUMEN

BACKGROUND: Chronic inflammation is implicated in numerous diseases, including major depression and type 2 diabetes mellitus (T2DM). Since depression and T2DM often co-exist, inflammatory pathways are suggested as a possible link. Hence, the establishment of an immune-mediated animal model would shed light on mechanisms possibly linking depression and metabolic alterations. OBJECTIVE: In this study we investigated a behavioural and metabolic paradigm following chronic infusion with low doses of lipopolysaccharide (LPS) using osmotic minipumps in male rats. METHODS: Behavioural testing consisted of evaluating activity level in the open field and depressive-like behaviour in the forced swim test. Metabolic assessment included measurement of body weight, food and water intake, and glucose and insulin levels during an oral glucose tolerance test. RESULTS: LPS-infused rats showed acute signs of sickness behaviour, but chronic LPS infusion did not induce behavioural or metabolic changes. CONCLUSION: These results suggest that although inflammation is immediately induced as indicated by acute sickness, 4 weeks of chronic LPS administration via osmotic minipumps did not result in behavioural changes. Therefore, this paradigm may not be a suitable model for studying the underlying mechanisms that link depression and T2DM.


Asunto(s)
Conducta Animal/efectos de los fármacos , Depresión/inducido químicamente , Lipopolisacáridos/administración & dosificación , Animales , Peso Corporal/efectos de los fármacos , Citocinas/metabolismo , Depresión/diagnóstico , Depresión/metabolismo , Depresión/psicología , Modelos Animales de Enfermedad , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa/métodos , Insulina/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA