Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 136: 119-127, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30981810

RESUMEN

With just a handful of documented cases of hybridisation in cartilaginous fishes, shark hybridisation remains poorly investigated. Small amounts of admixture have been detected between Galapagos (Carcharhinus galapagensis) and dusky (Carcharhinus obscurus) sharks previously, generating a hypothesis of ongoing hybridisation. We sampled a large number of individuals from areas where the species co-occur (contact zones) across the Pacific Ocean and used both mitochondrial and nuclear-encoded SNPs to examine genetic admixture and introgression between the two species. Using empirical analytical approaches and simulations, we first developed a set of 1873 highly informative SNPs for these two species to evaluate the degree of admixture between them. Overall, results indicate a high discriminatory power of nuclear SNPs (FST = 0.47, p < 0.05) between the two species, unlike mitochondrial DNA (ΦST = 0.00 p > 0.05), which failed to differentiate these species. We identified four hybrid individuals (∼1%) and detected bi-directional introgression between C. galapagensis and C. obscurus in the Gulf of California along the east Pacific coast of the Americas. We emphasize the importance of including a combination of mtDNA and diagnostic nuclear markers to properly assess species identification, detect patterns of hybridisation, and better inform management and conservation of these sharks, especially given the morphological similarities within the genus Carcharhinus.


Asunto(s)
Hibridación Genética , Tiburones/genética , Animales , Teorema de Bayes , California , Simulación por Computador , ADN Mitocondrial/genética , Geografía , Mitocondrias/genética , Océano Pacífico , Filogenia , Polimorfismo de Nucleótido Simple/genética , Tamaño de la Muestra
2.
Int J Mol Sci ; 20(8)2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027199

RESUMEN

Preeclampsia (PE) has been associated with placental dysfunction, resulting in fetal hypoxia, accelerated erythropoiesis, and increased erythroblast count in the umbilical cord blood (UCB). Although the detailed effects remain unknown, placental dysfunction can also cause inflammation, nutritional, and oxidative stress in the fetus that can affect erythropoiesis. Here, we compared the expression of surface adhesion molecules and the erythroid differentiation capacity of UCB hematopoietic stem/progenitor cells (HSPCs), UCB erythroid profiles along with the transcriptome and proteome of these cells between male and female fetuses from PE and normotensive pregnancies. While no significant differences were observed in UCB HSPC migration/homing and in vitro erythroid colony differentiation, the UCB HSPC transcriptome and the proteomic profile of the in vitro differentiated erythroid cells differed between PE vs. normotensive samples. Accordingly, despite the absence of significant differences in the UCB erythroid populations in male or female fetuses from PE or normotensive pregnancies, transcriptional changes were observed during erythropoiesis, particularly affecting male fetuses. Pathway analysis suggested deregulation in the mammalian target of rapamycin complex 1/AMP-activated protein kinase (mTORC1/AMPK) signaling pathways controlling cell cycle, differentiation, and protein synthesis. These results associate PE with transcriptional and proteomic changes in fetal HSPCs and erythroid cells that may underlie the higher erythroblast count in the UCB in PE.


Asunto(s)
Células Eritroides/metabolismo , Feto/patología , Preeclampsia/genética , Proteómica , Caracteres Sexuales , Transcripción Genética , Diferenciación Celular/genética , Movimiento Celular/genética , Eritropoyesis/genética , Femenino , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Preeclampsia/patología , Embarazo , Resultado del Embarazo/genética , Biosíntesis de Proteínas , Transcriptoma/genética , Cordón Umbilical/patología
3.
Heredity (Edinb) ; 120(5): 407-421, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29321624

RESUMEN

The application of genome-wide cytonuclear molecular data to identify management and adaptive units at various spatio-temporal levels is particularly important for overharvested large predatory organisms, often characterized by smaller, localized populations. Despite being "near threatened", current understanding of habitat use and population structure of Carcharhinus galapagensis is limited to specific areas within its distribution. We evaluated population structure and connectivity across the Pacific Ocean using genome-wide single-nucleotide polymorphisms (~7200 SNPs) and mitochondrial control region sequences (945 bp) for 229 individuals. Neutral SNPs defined at least two genetically discrete geographic groups: an East Tropical Pacific (Mexico, east and west Galapagos Islands), and another central-west Pacific (Lord Howe Island, Middleton Reef, Norfolk Island, Elizabeth Reef, Kermadec, Hawaii and Southern Africa). More fine-grade population structure was suggested using outlier SNPs: west Pacific, Hawaii, Mexico, and Galapagos. Consistently, mtDNA pairwise ΦST defined three regional stocks: east, central and west Pacific. Compared to neutral SNPs (FST = 0.023-0.035), mtDNA exhibited more divergence (ΦST = 0.258-0.539) and high overall genetic diversity (h = 0.794 ± 0.014; π = 0.004 ± 0.000), consistent with the longstanding eastern Pacific barrier between the east and central-west Pacific. Hawaiian and Southern African populations group within the west Pacific cluster. Effective population sizes were moderate/high for east/west populations (738 and 3421, respectively). Insights into the biology, connectivity, genetic diversity, and population demographics informs for improved conservation of this species, by delineating three to four conservation units across their Pacific distribution. Implementing such conservation management may be challenging, but is necessary to achieve long-term population resilience at basin and regional scales.


Asunto(s)
Variación Genética , Genética de Población , Tiburones/genética , Animales , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Ecuador , Femenino , Genotipo , Masculino , Océano Pacífico , Filogenia , Polimorfismo de Nucleótido Simple/genética
4.
J Environ Manage ; 197: 159-166, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28365562

RESUMEN

Methane mitigation in landfill top cover soils is mediated by methanotrophs whose optimal methane (CH4) oxidation capacity is governed by environmental and complex microbial community interactions. Optimization of CH4 remediating bio-filters need to take microbial responses into account. Divalent copper (Cu2+) and iron (Fe2+) are present in landfills at variable ratios and play a vital role in methane oxidation capacity and growth of methanotrophs. This study, as a first of its kind, therefore quantified effects of variable Cu2+ and Fe2+ (5:5, 5:25 and 5:50 µM) ratios on mixed methanotrophic communities enriched from landfill top cover (LB) and compost soils (CB). CH4 oxidation capacity, CH4 removal efficiencies, fatty acids content/profiles and polyhydroxybutyrate (PHB; a biopolymer) contents were also analysed to quantify performance and potential co-product development. Mixed methanotroph cultures were raised in 10 L continuous stirred tank reactors (CSTRs, Bioflo® & Celligen® 310 Fermentor/Bioreactor; John Morris Scientific, Chatswood, NSW, Australia). Community structure was determined by amplifying the V3-V4 region of 16s rRNA gene. Community structure and, consequently, fatty acid-profiles changed significantly with increasing Cu2+/Fe2+ ratios, and responses were different for LB and CB. Effects on methane oxidation capacities and PHB content were similar in the LB- and CB-CSTR, decreasing with increasing Cu2+/Fe2+ ratios, while biomass growth was unaffected. In general, high Fe2+ concentration favored growth of the type -II methanotroph Methylosinus in the CB-CSTR, but methanotroph abundances decreased in the LB-CSTR. Increase in Cu2+/Fe2+ ratio increased the growth of Sphingopyxis in both systems, while Azospirllum was co-dominant in the LB- but absent in the CB-CSTR. After 13 days, methane oxidation capacities and PHB content decreased by ∼50% and more in response to increasing Fe2+ concentrations. Although methanotroph abundance was ∼2% in the LB- (compared to >50% in CB-CSTR), methane oxidation capacities were comparable in the two systems, suggesting that methane oxidation capacity was maintained by the dominant Azospirllum and Sphingopyxis in the LB-CSTR. Despite similar methanotroph inoculum community composition and controlled environmental variables, increasing Cu2+/Fe2+ ratios resulted in significantly different microbial community structures in the LB- and CB-CSTR, indicative of complex microbial interactions. In summary, our results suggest that a detailed understanding of allelopathic interactions in mixed methanotrophic consortia is vital for constructing robust bio-filters for CH4 emission abatement.


Asunto(s)
Metano , Instalaciones de Eliminación de Residuos , Australia , Oxidación-Reducción , ARN Ribosómico 16S , Microbiología del Suelo
5.
BMC Genomics ; 16: 378, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25962588

RESUMEN

BACKGROUND: European eel is a panmictic species, whose decline has been recorded since the last 20 years. Among human-induced environmental factors of decline, the impact of water dams during species migration is questioned. The main issue of this study was to pinpoint phenotypic traits that predisposed glass eels to successful passage by water barriers. The approach of the study was individual-centred and without any a priori hypothesis on traits involved in the putative obstacles selective pressure. We analyzed the transcription level of 14,913 genes. RESULTS: Transcriptome analysis of three tissues (brain, liver and muscle) from individuals sampled on three successive forebays separated by water obstacles indicated different gene transcription profiles in brain between the two upstream forebays. No differences in gene transcription levels were observed in liver and muscle samples among segments. A total of 26 genes were differentially transcribed in brain. These genes encode for, among others, keratins, cytokeratins, calcium binding proteins (S100 family), cofilin, calmodulin, claudin and thy-1 membrane glycoprotein. The functional analysis of these genes highlighted a putative role of cytoskeletal dynamics and synaptic plasticity in fish upstream migration. CONCLUSION: Synaptic connections in brain are solicited while eels are climbing the obstacles with poorly designed fishways. Successful passage by such barriers can be related to spatial learning and spatial orientation abilities when fish is out of the water.


Asunto(s)
Migración Animal , Encéfalo/fisiología , Cognición , Perfilación de la Expresión Génica , Transcripción Genética , Agua , Anguilla , Animales , Encéfalo/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos
6.
BMC Genomics ; 13: 507, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23009661

RESUMEN

BACKGROUND: Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. RESULTS: To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. CONCLUSIONS: Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production.


Asunto(s)
Anguilas/genética , Retardadores de Llama/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Secuencia de Aminoácidos , Animales , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Transporte de Electrón/genética , Especies en Peligro de Extinción , Contaminación Ambiental , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Italia , Datos de Secuencia Molecular , Fosforilación Oxidativa/efectos de los fármacos , Transcriptoma , Pez Cebra/genética
7.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35143647

RESUMEN

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.


Asunto(s)
Densovirinae , Penaeidae , Animales , Australia , Densovirinae/genética , Genoma Viral , Penaeidae/genética , Reacción en Cadena de la Polimerasa
8.
Mol Ecol ; 20(7): 1333-46, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21299662

RESUMEN

European eels (Anguilla anguilla) spawn in the remote Sargasso Sea in partial sympatry with American eels (Anguilla rostrata), and juveniles are transported more than 5000 km back to the European and North African coasts. The two species have been regarded as classic textbook examples of panmixia, each comprising a single, randomly mating population. However, several recent studies based on continental samples have found subtle, but significant, genetic differentiation, interpreted as geographical or temporal heterogeneity between samples. Moreover, European and American eels can hybridize, but hybrids have been observed almost exclusively in Iceland, suggesting hybridization in a specific region of the Sargasso Sea and subsequent nonrandom dispersal of larvae. Here, we report the first molecular population genetics study based on analysis of 21 microsatellite loci in larvae of both Atlantic eel species sampled directly in the spawning area, supplemented by analysis of European glass eel samples. Despite a clear East-West gradient in the overlapping distribution of the two species in the Sargasso Sea, we only observed a single putative hybrid, providing evidence against the hypothesis of a wide marine hybrid zone. Analyses of genetic differentiation, isolation by distance, isolation by time and assignment tests provided strong evidence for panmixia in both the Sargasso Sea and across all continental samples of European eel after accounting for the presence of sibs among newly hatched larvae. European eel has declined catastrophically, and our findings call for management of the species as a single unit, necessitating coordinated international conservation efforts.


Asunto(s)
Anguilla/genética , Variación Genética , Hibridación Genética , Reproducción , Migración Animal , Animales , Repeticiones de Microsatélite , Océanos y Mares
9.
Elife ; 102021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34425939

RESUMEN

Cephalopods have evolved nervous systems that parallel the complexity of mammalian brains in terms of neuronal numbers and richness in behavioral output. How the cephalopod brain develops has only been described at the morphological level, and it remains unclear where the progenitor cells are located and what molecular factors drive neurogenesis. Using histological techniques, we located dividing cells, neural progenitors and postmitotic neurons in Octopus vulgaris embryos. Our results indicate that an important pool of progenitors, expressing the conserved bHLH transcription factors achaete-scute or neurogenin, is located outside the central brain cords in the lateral lips adjacent to the eyes, suggesting that newly formed neurons migrate into the cords. Lineage-tracing experiments then showed that progenitors, depending on their location in the lateral lips, generate neurons for the different lobes, similar to the squid Doryteuthis pealeii. The finding that octopus newborn neurons migrate over long distances is reminiscent of vertebrate neurogenesis and suggests it might be a fundamental strategy for large brain development.


Octopuses have evolved incredibly large and complex nervous systems that allow them to perform impressive behaviors, like plan ahead, navigate and solve puzzles. The nervous system of the common octopus (also known as Octopus vulgaris) contains over half a billion nerves cells called neurons, similar to the number found in small primates. Two thirds of these cells reside in the octopuses' arms, while the rest make-up a central brain that sits between their eyes. Very little is known about how this central brain forms in the embryo, including where the cells originate and which molecular factors drive their maturation in to adult cells. To help answer these questions, Deryckere et al. studied the brain of Octopus vulgaris at different stages of early development using various cell staining and imaging techniques. The experiments identified an important pool of dividing cells which sit in an area outside the central brain called the 'lateral lips'. In these cells, genes known to play a role in neural development in other animals are active, indicating that the cells had not reached their final, mature state. In contrast, the central brain did not seem to contain any of these immature cells at the point when it was growing the most. To investigate this further, Deryckere et al. used fluorescent markers to track the progeny of the dividing cells during development. This revealed that cells in the lateral lips take on a specific neuronal fate before migrating to their target region in the central brain. Newly matured neurons have also been shown to travel large distances in the embryos of vertebrates, suggesting that this mechanism may be a common strategy for building large, complex brains. Although the nervous system of the common octopus is comparable to mammals, they evolved from a very distant branch of the tree of life; indeed, their last common ancestor was a worm-like animal that lived about 600 million years ago. Studying the brain of the common octopus, as done here, could therefore provide new insights into how complex nervous systems, including our own, evolved over time.


Asunto(s)
Migración Animal , Encéfalo/crecimiento & desarrollo , Movimiento Celular , Células-Madre Neurales/fisiología , Neuronas/fisiología , Octopodiformes/anatomía & histología , Octopodiformes/fisiología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/citología , Encéfalo/fisiología
10.
Evol Appl ; 14(2): 536-552, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33664793

RESUMEN

Uncertainty hampers innovative mixed-fisheries management by the scales at which connectivity dynamics are relevant to management objectives. The spatial scale of sustainable stock management is species-specific and depends on ecology, life history and population connectivity. One valuable approach to understand these spatial scales is to determine to what extent population genetic structure correlates with the oceanographic environment. Here, we compare the level of genetic connectivity in three codistributed and commercially exploited demersal flatfish species living in the North East Atlantic Ocean. Population genetic structure was analysed based on 14, 14 and 10 neutral DNA microsatellite markers for turbot, brill and sole, respectively. We then used redundancy analysis (RDA) to attribute the genetic variation to spatial (geographical location), temporal (sampling year) and oceanographic (water column characteristics) components. The genetic structure of turbot was composed of three clusters and correlated with variation in the depth of the pycnocline, in addition to spatial factors. The genetic structure of brill was homogenous, but correlated with average annual stratification and spatial factors. In sole, the genetic structure was composed of three clusters, but was only linked to a temporal factor. We explored whether the management of data poor commercial fisheries, such as in brill and turbot, might benefit from population-specific information. We conclude that the management of fish stocks has to consider species-specific genetic structures and may benefit from the documentation of the genetic seascape and life-history traits.

11.
BMC Genomics ; 11: 635, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21080939

RESUMEN

BACKGROUND: Once highly abundant, the European eel (Anguilla anguilla L.; Anguillidae; Teleostei) is considered to be critically endangered and on the verge of extinction, as the stock has declined by 90-99% since the 1980s. Yet, the species is poorly characterized at molecular level with little sequence information available in public databases. RESULTS: The first European eel transcriptome was obtained by 454 FLX Titanium sequencing of a normalized cDNA library, produced from a pool of 18 glass eels (juveniles) from the French Atlantic coast and two sites in the Mediterranean coast. Over 310,000 reads were assembled in a total of 19,631 transcribed contigs, with an average length of 531 nucleotides. Overall 36% of the contigs were annotated to known protein/nucleotide sequences and 35 putative miRNA identified. CONCLUSIONS: This study represents the first transcriptome analysis for a critically endangered species. EeelBase, a dedicated database of annotated transcriptome sequences of the European eel is freely available at http://compgen.bio.unipd.it/eeelbase. Considering the multiple factors potentially involved in the decline of the European eel, including anthropogenic factors such as pollution and human-introduced diseases, our results will provide a rich source of data to discover and identify new genes, characterize gene expression, as well as for identification of genetic markers scattered across the genome to be used in various applications.


Asunto(s)
Anguilla/genética , Bases de Datos de Ácidos Nucleicos , Especies en Peligro de Extinción , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN/métodos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Contig , Bases de Datos de Proteínas , Europa (Continente) , Proteínas de Peces/química , Proteínas de Peces/genética , Genoma/genética , Humanos , MicroARNs/genética , Reproducibilidad de los Resultados , Homología de Secuencia de Ácido Nucleico , Smegmamorpha/genética , Especificidad de la Especie , Pez Cebra/genética
12.
Proc Biol Sci ; 277(1700): 3593-9, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-20573625

RESUMEN

Anguillid freshwater eels show remarkable life histories. In the Atlantic, the European eel (Anguilla anguilla) and American eel (Anguilla rostrata) undertake extensive migrations to spawn in the oceanic Sargasso Sea, and subsequently the offspring drift to foraging areas in Europe and North America, first as leaf-like leptocephali larvae that later metamorphose into glass eels. Since recruitment of European and American glass eels has declined drastically during past decades, there is a strong demand for further understanding of the early, oceanic phase of their life cycle. Consequently, during a field expedition to the eel spawning sites in the Sargasso Sea, we carried out a wide range of dedicated bio-physical studies across areas of eel larval distribution. Our findings suggest a key role of oceanic frontal processes, retaining eel larvae within a zone of enhanced feeding conditions and steering their drift. The majority of the more westerly distributed American eel larvae are likely to follow a westerly/northerly drift route entrained in the Antilles/Florida Currents. European eel larvae are generally believed to initially follow the same route, but their more easterly distribution close to the eastward flowing Subtropical Counter Current indicates that these larvae could follow a shorter, eastward route towards the Azores and Europe. The findings emphasize the significance of oceanic physical-biological linkages in the life-cycle completion of Atlantic eels.


Asunto(s)
Anguilla/crecimiento & desarrollo , Anguilla/fisiología , Migración Animal , Movimientos del Agua , Animales , Océano Atlántico , Europa (Continente) , Larva/crecimiento & desarrollo , Larva/fisiología , Biología Marina , América del Norte , Océanos y Mares , Reproducción
13.
Biol Lett ; 6(6): 819-22, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573615

RESUMEN

European eels (Anguilla anguilla) undertake spawning migrations of more than 5000 km from continental Europe and North Africa to frontal zones in the Sargasso Sea. Subsequently, the larval offspring are advected by large-scale eastward ocean currents towards continental waters. However, the Sargasso Sea is oligotrophic, with generally low plankton biomass, and the feeding biology of eel larvae has so far remained a mystery, hampering understanding of this peculiar life history. DNA barcoding of gut contents of 61 genetically identified A. anguilla larvae caught in the Sargasso Sea showed that even the smallest larvae feed on a striking variety of plankton organisms, and that gelatinous zooplankton is of fundamental dietary importance. Hence, the specific plankton composition seems essential for eel larval feeding and growth, suggesting a linkage between eel survival and regional plankton productivity. These novel insights into the prey of Atlantic eels may furthermore facilitate eel larval rearing in aquaculture, which ultimately may replace the unsustainable use of wild-caught glass eels.


Asunto(s)
Anguilla/fisiología , Anguilla/crecimiento & desarrollo , Animales , Océano Atlántico , Código de Barras del ADN Taxonómico , Dieta , Sistema Digestivo/química , Cadena Alimentaria , Larva/crecimiento & desarrollo , Larva/fisiología , Plancton/genética , Plancton/aislamiento & purificación , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/aislamiento & purificación , Zooplancton/genética , Zooplancton/aislamiento & purificación
14.
Gene ; 752: 144765, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32413480

RESUMEN

The natural flight response in shrimp is powered by rapid contractions of the abdominal muscle fibres to propel themselves backwards away from perceived danger. This muscle contraction is dependent on repetitive depolarization of muscle plasma membrane, triggering tightly spaced cytoplasmic [Ca2+] transients and rapidly rising tetanic force responses. To achieve such high amplitude and high frequency of Ca2+ transients requires a high abundance of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) to rapidly clear cytoplasmic Ca2+ between each transient and an efficient Ca2+ release system consisting of the Ryanodine Receptor (RyR), and voltage gated Ca2+ channels (CaVs). With the aim to expand our knowledge of muscle gene function and identify orthologous genes regulating muscle excitation-contraction (EC) coupling, this study assembled nine Penaeid shrimp muscle transcriptomes. On average, the nine transcriptomes contained 27,000 contigs, with an annotation rate of 36% and a BUSCO completeness of 70%. Despite maintaining their function, the crustacean RyR and CaV proteins showed evidence of significant diversification from mammalian orthologs, while SERCA remained more conserved. Several key components of protein interaction were conserved, while others showed distinct crustacean specific evolutionary adaptations. Lastly, this study revealed approximately 1,000 orthologous genes involved in muscle specific processes present across all nine species.


Asunto(s)
Acoplamiento Excitación-Contracción/genética , Penaeidae/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Animales , Evolución Biológica , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/fisiología , Citosol/metabolismo , Evolución Molecular , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Especificidad de la Especie , Transcriptoma/genética
15.
Sci Total Environ ; 743: 140675, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32927526

RESUMEN

The European eel is critically endangered. Although the quality of silver eels is essential for their reproduction, little is known about the effects of multiple contaminants on the spawning migration and the European eel management plan does not take this into account. To address this knowledge gap, we sampled 482 silver eels from 12 catchments across Europe and developed methods to assess three aspects of eel quality: muscular lipid content (N = 169 eels), infection with Anguillicola crassus (N = 482), and contamination by persistent organic pollutants (POPs, N = 169) and trace elements (TEs, N = 75). We developed a standardized eel quality risks index (EQR) using these aspects for the subsample of 75 female eels. Among 169 eels, 33% seem to have enough muscular lipids content to reach the Sargasso Sea to reproduce. Among 482 silver eels, 93% were infected by A. crassus at least once during their lifetime. All contaminants were above the limit of quantification, except the 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), Ag and V. The contamination by POPs was heterogeneous between catchments while TEs were relatively homogeneous, suggesting a multi-scale adaptation of management plans. The EQR revealed that eels from Warwickshire were most impacted by brominated flame-retardants and agricultural contaminants, those from Scheldt were most impacted by agricultural and construction activities, PCBs, coal burning, and land use, while Frémur eels were best characterized by lower lipid contents and high parasitic and BTBPE levels. There was a positive correlation between EQR and a human footprint index highlighting the capacity of silver eels for biomonitoring human activities and the potential impact on the suitability of the aquatic environment for eel population health. EQR therefore represents a step forward in the standardization and mapping of eel quality risks, which will help identify priorities and strategies for restocking freshwater ecosystems.


Asunto(s)
Anguilla , Retardadores de Llama , Bifenilos Policlorados/análisis , Animales , Ecosistema , Anguilas , Europa (Continente) , Femenino , Humanos
16.
Sci Data ; 6(1): 13, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931949

RESUMEN

The common octopus, Octopus vulgaris, is an active marine predator known for the richness and plasticity of its behavioral repertoire, and remarkable learning and memory capabilities. Octopus and other coleoid cephalopods, cuttlefish and squid, possess the largest nervous system among invertebrates, both for cell counts and body to brain size. O. vulgaris has been at the center of a long-tradition of research into diverse aspects of its biology. To leverage research in this iconic species, we generated 270 Gb of genomic sequencing data, complementing those available for the only other sequenced congeneric octopus, Octopus bimaculoides. We show that both genomes are similar in size, but display different levels of heterozygosity and repeats. Our data give a first quantitative glimpse into the rate of coding and non-coding regions and support the view that hundreds of novel genes may have arisen independently despite the close phylogenetic distance. We furthermore describe a reference-guided assembly and an open genomic resource (CephRes-gdatabase), opening new avenues in the study of genomic novelties in cephalopods and their biology.


Asunto(s)
Genoma , Octopodiformes/genética , Animales , Genómica , Especificidad de la Especie
17.
Ecol Evol ; 9(8): 4465-4472, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31031920

RESUMEN

Fishing represents a major problem for conservation of chondrichthyans, with a quarter of all species being overexploited. School sharks, Galeorhinus galeus, are targeted by commercial fisheries in Australia and New Zealand. The Australian stock has been depleted to below 20% of its virgin biomass, and the species is recorded as Conservation Dependent within Australia. Individuals are known to move between both countries, but it is disputed whether the stocks are reproductively linked. Accurate and unbiased determination of stock and population connectivity is crucial to inform effective management. In this study, we assess the genetic composition and population connectivity between Australian and New Zealand school sharks using genome-wide SNPs, while accounting for non-random kin sampling. Between 2009 and 2013, 88 neonate and juvenile individuals from Tasmanian and New Zealand nurseries were collected and genotyped. Neutral loci were analyzed to detect fine-scale signals of reproductive connectivity. Seven full-sibling groups were identified and removed for unbiased analysis. Based on 6,587 neutral SNPs, pairwise genetic differentiation from Tasmanian and New Zealand neonates was non-significant (F ST = 0.0003, CI95 = [-0.0002, 0.0009], p = 0.1163; D est = 0.0006 ± 0.0002). This pattern was supported by clustering results. In conclusion, we show a significant effect of non-random sampling of kin and identify fine-scale reproductive connectivity between Australian and New Zealand school sharks. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.pd8612j.

19.
Nutr Res ; 50: 25-36, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29540269

RESUMEN

Obesity and other lifestyle diseases in modern society can be related to historical dietary changes from diets balanced in omega-6 and omega-3 to the unbalanced "Western-type" diet. It is recognized that diet influences the murine and human gut microbiome, and most research indicates that microbial diversity and composition are altered by high-fat diets (HFDs). However, good knowledge about the effects of early exposure to HFD on the maturation and structure of the bacterial community is limited. Using mice as model, we hypothesized that an HFD alters the early dynamic of the gut bacterial community toward an unstable/unhealthy state. By sequencing the V3 and V4 regions of the 16S ribosomal ribonucleic acid gene, we investigated the bacterial community in fecal samples of mice fed a control diet and an HFD at weaning (sampling time 1) and after 8 weeks of dietary intervention (11weeks of age; sampling time 2). Natural temporal microbiome maturation was evidenced by a general increase in microbial diversity and shifts in microbial community between sampling times 1 and 2 toward a mature community. However, the HFD led to significant structural segregation of the microbiome compared with controls; the HFD diet repressed health-enhancing bacteria (eg, Bifidobacterium and Akkermansia) and promoted health-detracting bacteria (ie, those associated with gut disorders, eg, Dorea). We suggest that early-life consumption of HFD negatively impacts the natural gut bacterial community maturation leading toward a potentially persistent unhealthy stage.


Asunto(s)
Bacterias/crecimiento & desarrollo , Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/farmacología , Conducta Alimentaria , Microbioma Gastrointestinal , Intestinos/efectos de los fármacos , Animales , Bacterias/genética , Dieta Occidental/efectos adversos , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Intestinos/microbiología , Ratones Endogámicos C57BL , ARN Ribosómico 16S
20.
Ecol Evol ; 8(18): 9503-9515, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30377518

RESUMEN

Developing efficient, reliable, cost-effective ways to identify diet is required to understand trophic ecology in complex ecosystems and improve food web models. A combination of techniques, each varying in their ability to provide robust, spatially and temporally explicit information can be applied to clarify diet data for ecological research. This study applied an integrative analysis of a fishery-targeted species group-Plectropomus spp. in the central Great Barrier Reef, Australia, by comparing three diet-identification approaches. Visual stomach content analysis provided poor identification with ~14% of stomachs sampled resulting in identification to family or lower. A molecular approach was successful with prey from ~80% of stomachs identified to genus or species, often with several unique prey in a stomach. Stable isotope mixing models utilizing experimentally derived assimilation data, identified similar prey as the molecular technique but at broader temporal scales, particularly when prior diet information was incorporated. Overall, Caesionidae and Pomacentridae were the most abundant prey families (>50% prey contribution) for all Plectropomus spp., highlighting the importance of planktivorous prey. Less abundant prey categories differed among species/color phases indicating possible niche segregation. This study is one of the first to demonstrate the extent of taxonomic resolution provided by molecular techniques, and, like other studies, illustrates that temporal investigations of dietary patterns are more accessible in combination with stable isotopes. The consumption of mainly planktivorous prey within this species group has important implications within coral reef food webs and provides cautionary information regarding the effects that changing resources could have in reef ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA