Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 33(12): 8056-8065, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37067514

RESUMEN

Temporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE. SVM was able to predict group membership (mean accuracy = 0.70, area under the curve (AUC) = 0.747, Brier score (BS) = 0.264) using 10-fold cross-validation. In addition, k-means clustering identified 2 TLE clusters: 1 similar to controls, and 1 dissimilar. Clusters were significantly different in their distribution of cognitive phenotypes, with the Dissimilar cluster containing the majority of TLE with cognitive impairment (χ2 = 6.641, P = 0.036). In addition, cluster membership showed significant correlations between GT measures and clinical variables. Given that SVM classification seemed driven by the Dissimilar cluster, SVM analysis was repeated to classify Dissimilar versus Similar + Controls with a mean accuracy of 0.91 (AUC = 0.957, BS = 0.189). Altogether, the pattern of results shows that GT measures based on connectome DWI could be significant factors in the search for clinical and neurobehavioral biomarkers in TLE.


Asunto(s)
Conectoma , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Conectoma/métodos , Imagen de Difusión por Resonancia Magnética , Cognición , Imagen por Resonancia Magnética/métodos
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928388

RESUMEN

Sleep problems are a significant phenotype in children with fragile X syndrome. Our prior work assessed sleep-wake cycles in Fmr1KO male mice and wild type (WT) littermate controls in response to ketogenic diet therapy where mice were treated from weaning (postnatal day 18) through study completion (5-6 months of age). A potentially confounding issue with commencing treatment during an active period of growth is the significant reduction in weight gain in response to the ketogenic diet. The aim here was to employ sleep electroencephalography (EEG) to assess sleep-wake cycles in mice in response to the Fmr1 genotype and a ketogenic diet, with treatment starting at postnatal day 95. EEG results were compared with prior sleep outcomes to determine if the later intervention was efficacious, as well as with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. The data replicated findings that Fmr1KO mice exhibit sleep-wake patterns similar to wild type littermates during the dark cycle when maintained on a control purified-ingredient diet but revealed a genotype-specific difference during hours 4-6 of the light cycle of the increased wake (decreased sleep and NREM) state in Fmr1KO mice. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of NREM sleep in both wild type and Fmr1KO mice during the dark cycle. Differences in sleep microstructure (length of wake bouts) supported the altered sleep states in response to ketogenic diet. Commencing ketogenic diet treatment in adulthood resulted in a 15% (WT) and 8.6% (Fmr1KO) decrease in body weight after 28 days of treatment, but not the severe reduction in body weight associated with starting treatment at weaning. We conclude that the lack of evidence for improved sleep during the light cycle (mouse sleep time) in Fmr1KO mice in response to ketogenic diet therapy in two studies suggests that ketogenic diet may not be beneficial in treating sleep problems associated with fragile X and that actigraphy is not a reliable surrogate for sleep EEG in mice.


Asunto(s)
Dieta Cetogénica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones Endogámicos C57BL , Ratones Noqueados , Sueño , Animales , Ratones , Síndrome del Cromosoma X Frágil/dietoterapia , Masculino , Sueño/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Electroencefalografía , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833907

RESUMEN

Nearly half of children with fragile X syndrome experience sleep problems including trouble falling asleep and frequent nighttime awakenings. The goals here were to assess sleep-wake cycles in mice in response to Fmr1 genotype and a dietary intervention that reduces hyperactivity. Electroencephalography (EEG) results were compared with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. Specifically, sleep-wake patterns in adult wild type and Fmr1KO littermate mice were recorded after EEG electrode implantation and the recordings manually scored for vigilance states. The data indicated that Fmr1KO mice exhibited sleep-wake patterns similar to wild type littermates when maintained on a control purified ingredient diet. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of non-rapid eye movement (NREM) sleep in both wild type and Fmr1KO mice during the dark cycle, which corresponded to decreased activity levels. Treatment with a ketogenic diet flattened diurnal sleep periodicity in both wild type and Fmr1KO mice. Differences in several sleep microstructure outcomes (number and length of sleep and wake bouts) supported the altered sleep states in response to a ketogenic diet and were correlated with altered rest-activity cycles. While actigraphy may be a less expensive, reduced labor surrogate for sleep EEG during the dark cycle, daytime resting in mice did not correlate with EEG sleep states.


Asunto(s)
Dieta Cetogénica , Humanos , Niño , Animales , Ratones , Ratones Endogámicos C57BL , Sueño/fisiología , Vigilia/fisiología , Electroencefalografía , Ratones Noqueados , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
4.
J Neurosci ; 41(46): 9669-9686, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34620720

RESUMEN

In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.


Asunto(s)
Giro Dentado/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Memoria Episódica , Neuronas/patología , Adolescente , Adulto , Anciano , Animales , Aprendizaje Discriminativo/fisiología , Femenino , Humanos , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/fisiología , Adulto Joven
5.
Neuroimage ; 264: 119749, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379420

RESUMEN

PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.


Asunto(s)
Mapeo Encefálico , Comprensión , Adulto , Humanos , Mapeo Encefálico/métodos , Comprensión/fisiología , Magnetoencefalografía , Imagen por Resonancia Magnética , Lóbulo Temporal
6.
Ann Neurol ; 90(5): 840-844, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34476841

RESUMEN

Patients with epilepsy report that sleep deprivation is a common trigger for breakthrough seizures. The basic mechanism of this phenomenon is unknown. In the Kv1.1-/- mouse model of epilepsy, daily sleep deprivation indeed exacerbated seizures though these effects were lost after the third day. Sleep deprivation also accelerated mortality in ~ 52% of Kv1.1-/- mice, not observed in controls. Voltage-clamp experiments on the day after recovery from sleep deprivation showed reductions in GABAergic tonic inhibition in dentate granule cells in epileptic Kv1.1-/- mice. Our results suggest that sleep deprivation is detrimental to seizures and survival, possibly due to reductions in GABAergic tonic inhibition. ANN NEUROL 2021;90:840-844.


Asunto(s)
Epilepsia/fisiopatología , Receptores de GABA-A/metabolismo , Convulsiones/fisiopatología , Privación de Sueño/fisiopatología , Animales , Electroencefalografía/métodos , Ratones , Sueño/fisiología
7.
Epilepsy Behav ; 110: 107172, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32554180

RESUMEN

Neuroticism, a core personality trait characterized by a tendency towards experiencing negative affect, has been reported to be higher in people with temporal lobe epilepsy (TLE) compared with healthy individuals. Neuroticism is a known predictor of depression and anxiety, which also occur more frequently in people with TLE. The purpose of this study was to identify abnormalities in whole-brain resting-state functional connectivity in relation to neuroticism in people with TLE and to determine the degree of unique versus shared patterns of abnormal connectivity in relation to elevated symptoms of depression and anxiety. Ninety-three individuals with TLE (55 females) and 40 healthy controls (18 females) from the Epilepsy Connectome Project (ECP) completed measures of neuroticism, depression, and anxiety, which were all significantly higher in people with TLE compared with controls. Resting-state functional connectivity was compared between controls and groups with TLE with high and low neuroticism using analysis of variance (ANOVA) and t-test. In secondary analyses, the same analytics were performed using measures of depression and anxiety and the unique variance in resting-state connectivity associated with neuroticism independent of symptoms of depression and anxiety identified. Increased neuroticism was significantly associated with hyposynchrony between the right hippocampus and Brodmann area (BA) 9 (region of prefrontal cortex (PFC)) (p < 0.005), representing a unique relationship independent of symptoms of depression and anxiety. Hyposynchrony of connection between the right hippocampus and BA47 (anterior frontal operculum) was associated with high neuroticism and with higher depression and anxiety scores (p < 0.05), making it a shared abnormal connection for the three measures. In conclusion, increased neuroticism exhibits both unique and shared patterns of abnormal functional connectivity with depression and anxiety symptoms between regions of the mesial temporal and frontal lobe.


Asunto(s)
Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Lóbulo Frontal/diagnóstico por imagen , Sistema Límbico/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Neuroticismo/fisiología , Lóbulo Temporal/diagnóstico por imagen , Adulto , Conectoma/métodos , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Lóbulo Frontal/fisiopatología , Lateralidad Funcional/fisiología , Humanos , Sistema Límbico/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Descanso/fisiología , Lóbulo Temporal/fisiopatología
8.
Epilepsy Behav ; 98(Pt A): 220-227, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31387000

RESUMEN

Behavioral and personality disorders in temporal lobe epilepsy (TLE) have been a topic of interest and controversy for decades, with less attention paid to alterations in normal personality structure and traits. In this investigation, core personality traits (the Big 5) and their neurobiological correlates in TLE were explored using the Neuroticism Extraversion Openness-Five Factor Inventory (NEO-FFI) and structural magnetic resonance imaging (MRI) through the Epilepsy Connectome Project (ECP). NEO-FFI scores from 67 individuals with TLE (34.6 ±â€¯9.5 years; 67% women) were compared to 31 healthy controls (32.8 ±â€¯8.9 years; 41% women) to assess differences in the Big 5 traits (agreeableness, openness, conscientiousness, neuroticism, and extraversion). Individuals with TLE showed significantly higher neuroticism, with no significant differences on the other traits. Neural correlates of neuroticism were then determined in participants with TLE including cortical and subcortical volumes. Distributed reductions in cortical gray matter volumes were associated with increased neuroticism. Subcortically, hippocampal and amygdala volumes were negatively associated with neuroticism. These results offer insight into alterations in the Big 5 personality traits in TLE and their brain-related correlates.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Neuroticismo , Inventario de Personalidad , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Encéfalo/fisiología , Epilepsia del Lóbulo Temporal/psicología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Neuroticismo/fisiología , Personalidad/fisiología
9.
Epilepsia ; 59(8): 1527-1539, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30009381

RESUMEN

OBJECTIVES: Circadian rhythms are affected in many neurological disorders. Although sleep disturbances are known in epilepsy, data on circadian rhythm disturbances in epilepsy are sparse. Here, we examined diurnal and circadian rest-activity and sleep-wake patterns in Kcna1-null mice, which exhibit spontaneous recurrent seizures and are a model of sudden unexpected death in epilepsy. Furthermore, we sought to determine whether seizures or aberrant oscillation of core clock genes and a regulator, sirtuin 1 (Sirt1), is associated with disrupted rhythms. METHODS: We used passive infrared actigraphy to assess rest-activity patterns, electroencephalography for seizure and sleep analysis, and reverse transcription polymerase chain reaction and Western blotting to evaluate expression of clock genes and Sirt1 in Kcna1-null and wild-type mice. RESULTS: Epileptic Kcna1-null animals have disrupted diurnal and circadian rest-activity patterns, tending to exhibit prolonged circadian periods. Electroencephalographic analysis confirmed disturbances in sleep architecture, with more time spent awake and less asleep. Although all epileptic mice manifested disrupted diurnal and circadian rest-activity patterns, we found no correlation between actual seizure burden and degree of sleep disruption. However, we found attenuated oscillations of several clock genes (ie, Clock, Bmal1, Per1, and Per2) and diurnal Sirt1 mRNA in the anterior hypothalamus. SIGNIFICANCE: Attenuated oscillation of several core clock genes correlates with, and may underlie, aberrant diurnal and circadian rest-activity and sleep-wake patterns observed in Kcna1-null mice. This could contribute to late complications in epilepsy, such as sudden unexpected death in epilepsy. Sirt1 may represent a useful therapeutic target for rescuing circadian clock gene rhythmicity and sleep patterns in epilepsy.


Asunto(s)
Proteínas CLOCK/metabolismo , Muerte Súbita , Epilepsia/metabolismo , Epilepsia/fisiopatología , Regulación de la Expresión Génica/genética , Sirtuina 1/metabolismo , Actigrafía , Animales , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Electroencefalografía , Electromiografía , Epilepsia/genética , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero , Sueño/genética , Vigilia/genética
10.
Epilepsia ; 59(1): 92-105, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29193044

RESUMEN

OBJECTIVE: Chronic sleep deficiency is associated with early mortality. In the epileptic population, there is a higher prevalence of sleep disorders, and individuals with severe refractory epilepsy are at greater risk of premature mortality than the general population. Sudden unexpected death in epilepsy affects 1:1000 cases of epilepsy each year. Ketogenic diet (KD) treatment is one of the few effective options for refractory seizures. Despite KD reducing seizures and increasing longevity in Kv1.1 knockout (KO) mice, they still succumb to sudden death. This study aims to determine whether (1) the rest profiles of KO and KD-treated KO (KOKD) mice resemble each other as a function of either age or proximity to death and (2) the timing of death correlates with acute or chronic changes in rest. METHODS: Noninvasive actimetry was used to monitor rest throughout the lives of KO and wild-type (WT) littermates administered standard diet or KD. RESULTS: As KO mice age, rest is reduced (P < .0001). Rest is significantly improved in KDKO mice (P < .0001), resembling WT values at several ages. When age is removed as a variable and data are realigned to the day of death, the rest profiles of KO and KOKD groups worsen to similar degrees as a function of proximity to death. The amount of rest acutely is not sensitive to the timing of death, whereas chronic rest deficiency profiles (10-15 days prior to death) of both groups were indistinguishable. Chronic accumulation of rest deficiency over the final 15 days was associated with 75% of deaths. SIGNIFICANCE: Our data suggest that the accumulated rest deficiency is associated with sudden death in Kv1.1 KO mice. These data (1) support the proposed clinical hypothesis that chronic sleep deficiency may be associated with early mortality in epileptic patients and (2) warrant future preclinical and clinical studies on sleep monitoring in epileptic patients.


Asunto(s)
Muerte Súbita , Epilepsia/genética , Epilepsia/fisiopatología , Canal de Potasio Kv.1.1/deficiencia , Privación de Sueño/genética , Privación de Sueño/fisiopatología , Actigrafía , Factores de Edad , Animales , Dieta Cetogénica/métodos , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/dietoterapia , Canal de Potasio Kv.1.1/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Privación de Sueño/dietoterapia , Telemetría
11.
Brain ; 140(4): 1026-1040, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334879

RESUMEN

In animal studies, both seizures and interictal spikes induce synaptic potentiation. Recent evidence suggests that electroencephalogram slow wave activity during sleep reflects synaptic potentiation during wake, and that its homeostatic decrease during the night is associated with synaptic renormalization and its beneficial effects. Here we asked whether epileptic activity induces plastic changes that can be revealed by high-density electroencephalography recordings during sleep in 15 patients with focal epilepsy and 15 control subjects. Compared to controls, patients with epilepsy displayed increased slow wave activity power during non-rapid eye movement sleep over widespread, bilateral scalp regions. This global increase in slow wave activity power was positively correlated with the frequency of secondarily generalized seizures in the 3-5 days preceding the recordings. Individual patients also showed local increases in sleep slow wave activity power at scalp locations matching their seizure focus. This local increase in slow wave activity power was positively correlated with the frequency of interictal spikes during the last hour of wakefulness preceding sleep. By contrast, frequent interictal spikes during non-rapid eye movement sleep predicted a reduced homeostatic decrease in the slope of sleep slow waves during the night, which in turn predicted reduced daytime learning. Patients also showed an increase in sleep spindle power, which was negatively correlated with intelligence quotient. Altogether, these findings suggest that both seizures and interictal spikes may induce long-lasting changes in the human brain that can be sensitively detected by electroencephalographic markers of sleep homeostasis. Furthermore, abnormalities in sleep markers are correlated with cognitive impairment, suggesting that not only seizures, but also interictal spikes can have negative consequences.


Asunto(s)
Disfunción Cognitiva/psicología , Epilepsias Parciales/psicología , Adulto , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Epilepsia Refractaria/complicaciones , Epilepsia Refractaria/psicología , Electroencefalografía , Epilepsias Parciales/complicaciones , Epilepsias Parciales/diagnóstico por imagen , Femenino , Homeostasis , Humanos , Procesamiento de Imagen Asistido por Computador , Pruebas de Inteligencia , Aprendizaje , Masculino , Persona de Mediana Edad , Plasticidad Neuronal , Convulsiones/fisiopatología , Convulsiones/psicología , Sueño , Sueño REM
12.
Epilepsy Behav ; 55: 24-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26724401

RESUMEN

This study was undertaken to describe seizure phenotypes, natural progression, sleep-wake patterns, as well as periodicity of seizures in Kcna-1 null mutant mice. These mice were implanted with epidural electroencephalography (EEG) and electromyography (EMG) electrodes, and simultaneous video-EEG recordings were obtained while animals were individually housed under either diurnal (LD) condition or constant darkness (DD) over ten days of recording. The video-EEG data were analyzed to identify electrographic and behavioral phenotypes and natural progression and to examine the periodicity of seizures. Sleep-wake patterns were analyzed to understand the distribution and onset of seizures across the sleep-wake cycle. Four electrographically and behaviorally distinct seizure types were observed. Regardless of lighting condition that animals were housed in, Kcna-1 null mice initially expressed only a few of the most severe seizure types that progressively increased in frequency and decreased in seizure severity. In addition, a circadian periodicity was noted, with seizures peaking in the first 12h of the Zeitgeber time (ZT) cycle, regardless of lighting conditions. Interestingly, seizure onset differed between lighting conditions where more seizures arose out of sleep in LD conditions, whereas under DD conditions, the majority occurred out of the wakeful state. We suggest that this model be used to understand the circadian pattern of seizures as well as the pathophysiological implications of sleep and circadian disturbances in limbic epilepsies.


Asunto(s)
Canal de Potasio Kv.1.1/genética , Convulsiones/genética , Convulsiones/fisiopatología , Sueño/genética , Vigilia/genética , Animales , Conducta Animal , Ritmo Circadiano , Oscuridad , Electroencefalografía , Electromiografía , Iluminación , Ratones , Ratones Noqueados , Periodicidad
13.
Brain Inj ; 28(9): 1151-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25099019

RESUMEN

PRIMARY OBJECTIVE: To assess the current state of the art of epilepsy monitoring in intensive care unit (ICU). RESEARCH DESIGN: Review article. METHODS AND PROCEDURES: A review of current scientific literature, as well as an illustrative case report. MAIN OUTCOMES AND RESULTS: Recent continuous electroencephalography (cEEG) monitoring studies revealed that non-convulsive seizures are very common in ICU. Conventional EEG is insufficient to detect them. However, very long recordings, of more than 24 hours, are needed to reach a good sensitivity. Even if cEEG improves monitoring of epileptic patients in the intensive care unit (ICU), studies using intracranial recordings show that conventional montage cEEG is, however, insufficient to detect all neurological deterioration in patients in the ICU. This review discusses the potential interest of dense array scalp EEG recordings to increase the sensitivity of detection of epileptic events in non-responsive patients in the ICU and to possibly help improve their prognosis, by allowing an earlier start of their treatment. CONCLUSIONS: Studies using dense array scalp EEG could potentially improve the detection and management of seizures in non-responsive patients in the ICU. Studies comparing this technique to conventional cEEG recordings are warranted.


Asunto(s)
Diagnóstico Precoz , Electroencefalografía , Epilepsia/diagnóstico , Monitoreo Fisiológico/métodos , Convulsiones/diagnóstico , Hemorragia Subaracnoidea/fisiopatología , Anticonvulsivantes/uso terapéutico , Coma/fisiopatología , Cuidados Críticos , Epilepsia/fisiopatología , Humanos , Unidades de Cuidados Intensivos , Pronóstico , Convulsiones/etiología , Convulsiones/fisiopatología , Hemorragia Subaracnoidea/complicaciones
14.
Neurology ; 103(2): e209621, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38875512

RESUMEN

BACKGROUND AND OBJECTIVES: Approximately 30% of critically ill patients have seizures, and more than half of these seizures do not have an overt clinical correlate. EEG is needed to avoid missing seizures and prevent overtreatment with antiseizure medications. Conventional-EEG (cEEG) resources are logistically constrained and unable to meet their growing demand for seizure detection even in highly developed centers. Brief EEG screening with the validated 2HELPS2B algorithm was proposed as a method to triage cEEG resources, but it is hampered by cEEG requirements, primarily EEG technologists. Seizure risk-stratification using reduced time-to-application rapid response-EEG (rrEEG) systems (∼5 minutes) could be a solution. We assessed the noninferiority of the 2HELPS2B score on a 1-hour rrEEG compared to cEEG. METHODS: A multicenter retrospective EEG diagnostic accuracy study was conducted from October 1, 2021, to July 31, 2022. Chart and EEG review performed with consecutive sampling at 4 tertiary care centers, included records of patients ≥18 years old, from January 1, 2018, to June 20, 2022. Monte Carlo simulation power analysis yielded n = 500 rrEEG; for secondary outcomes n = 500 cEEG and propensity-score covariate matching was planned. Primary outcome, noninferiority of rrEEG for seizure risk prediction, was assessed per area under the receiver operator characteristic curve (AUC). Noninferiority margin (0.05) was based on the 2HELPS2B validation study. RESULTS: A total of 240 rrEEG with follow-on cEEG were obtained. Median age was 64 (interquartile range 22); 42% were female. 2HELPS2B on a 1-hour rrEEG met noninferiority to cEEG (AUC 0.85, 95% CI 0.78-0.90, p = 0.001). Secondary endpoints of comparison with a matched contemporaneous cEEG showed no significant difference in AUC (0.89, 95% CI 0.83-0.94, p = 0.31); in false negative rate for the 2HELPS2B = 0 group (p = 1.0) rrEEG (0.021, 95% CI 0-0.062), cEEG (0.016, 95% CI 0-0.048); nor in survival analyses. DISCUSSION: 2HELPS2B on 1-hour rrEEG is noninferior to cEEG for seizure prediction. Patients with low-risk (2HELPS2B = 0) may be able to forgo prolonged cEEG, allowing for increased monitoring of at-risk patients. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that rrEEG is noninferior to cEEG in calculating the 2HELPS2B score to predict seizure risk.


Asunto(s)
Electroencefalografía , Convulsiones , Humanos , Electroencefalografía/métodos , Femenino , Estudios Retrospectivos , Masculino , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Persona de Mediana Edad , Anciano , Adulto , Investigación sobre la Eficacia Comparativa
15.
J Paediatr Child Health ; 49(6): 432-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22974358

RESUMEN

Status epilepticus (SE) remains a life-threatening condition that afflicts both adults and children, and may occur at onset of epilepsy, especially in children. Febrile SE is the most common cause in children, while other symptomatic causes are less frequent compared to adults. The aetiological workup that must be undertaken in all cases includes neuroimaging and electroencephalography. The various electroencephalographic patterns seen in patients with SE along with the out-of-hospital treatment for SE in children and treatment strategies in cases that are refractory to first-line medical treatments are discussed. Medically induced coma may be necessary in refractory cases, although the optimal agents to use and degree of electroencephalographic suppression in children remain unclear. Neurosurgery is not a well-known treatment option that could be considered for refractory cases. Although the prognosis has probably improved over the years, it remains a potential life-threatening emergency.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Estado Epiléptico , Niño , Electroencefalografía , Femenino , Encuestas Epidemiológicas , Humanos , Masculino , Pronóstico , Estado Epiléptico/diagnóstico , Estado Epiléptico/etiología , Estado Epiléptico/terapia
16.
Epilepsy Behav Rep ; 17: 100518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036893

RESUMEN

This is a case report of a 62-year-old male with lifelong temporal lobe epilepsy presented with an interesting matrix of clinical, cognitive, psychiatric, neuroinaging and psychosocial features. This was one of the cases presented for review and discussion at the ILAE Neuropsychology Training Course as part of a case series discussion and is highlighted to illustrate the potential for neuropsychological resilience in a patient with epilepsy.

17.
Sci Rep ; 12(1): 14407, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002603

RESUMEN

Machine learning analyses were performed on graph theory (GT) metrics extracted from brain functional and morphological data from temporal lobe epilepsy (TLE) patients in order to identify intrinsic network phenotypes and characterize their clinical significance. Participants were 97 TLE and 36 healthy controls from the Epilepsy Connectome Project. Each imaging modality (i.e., Resting-state functional Magnetic Resonance Imaging (RS-fMRI), and structural MRI) rendered 2 clusters: one comparable to controls and one deviating from controls. Participants were minimally overlapping across the identified clusters, suggesting that an abnormal functional GT phenotype did not necessarily mean an abnormal morphological GT phenotype for the same subject. Morphological clusters were associated with a significant difference in the estimated lifetime number of generalized tonic-clonic seizures and functional cluster membership was associated with age. Furthermore, controls exhibited significant correlations between functional GT metrics and cognition, while for TLE participants morphological GT metrics were linked to cognition, suggesting a dissociation between higher cognitive abilities and GT-derived network measures. Overall, these findings demonstrate the existence of clinically meaningful minimally overlapping phenotypes of morphological and functional GT networks. Functional network properties may underlie variance in cognition in healthy brains, but in the pathological state of epilepsy the cognitive limits might be primarily related to structural cerebral network properties.


Asunto(s)
Conectoma , Epilepsia del Lóbulo Temporal , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Fenotipo
18.
Sleep ; 45(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36165953

RESUMEN

STUDY OBJECTIVES: Traumatic brain injury (TBI) can result in posttraumatic epilepsy (PTE) and sleep disturbances. We hypothesized that treatment with sleep aids after TBI can ameliorate PTE. METHODS: CD-1 mice underwent controlled cortical impact (CCI), sham injury, or no craniotomy. Sham and CCI groups underwent a monthlong daily treatment with sleep aids including a dual orexin antagonist (DORA-22) or THIP (gaboxadol) or a respective vehicle starting on the day of CCI. We performed continuous EEG (electroencephalography) recordings at week 1 and months 1, 2, and 3 for ~1 week each time. Seizure analysis occurred at all-time points and sleep analysis occurred in week 1 and month-1/2 in all groups. Subsets of CCI and sham groups were subjected to voltageclamp experiments in hippocampal slices to evaluate GABAergic synaptic inhibition. RESULTS: DORA-22 treatment suppressed seizures in month 1-3 recordings. TBI reduced the amplitude and frequency of miniature inhibitory synaptic currents (mIPSCs) in dentate granule cells and these changes were rescued by DORA-22 treatment. Sleep analysis showed that DORA-22 increased nonrapid eye movement (NREM) sleep during lights-off whereas THIP increased REM sleep during lights-on in week 1. Both treatments displayed subtle changes in time spent in NREM or REM at month-1/2 as well. TBI not only increased normalized EEG delta power (NΔ) at week-1 and month-1 but also resulted in the loss of the homeostatic diurnal oscillation of NΔ, which was restored by DORA-22 but not THIP treatment. CONCLUSIONS: Dual orexin antagonists may have a therapeutic potential in suppressing PTE potentially by enhancing GABAergic inhibition and impacting sleep homeostatic drive.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Ratones , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Electroencefalografía , Antagonistas de los Receptores de Orexina/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Sueño/fisiología
19.
Br J Clin Pharmacol ; 72(3): 381-93, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21501212

RESUMEN

The clinical manifestations of antibiotic-induced neurotoxic effects, the underlying mechanisms and management strategies have been reviewed. PubMed and OVID searches (January 1960-June 2010) were conducted using search terms such as antibiotics, side effects, neurotoxicity and encephalopathy which yielded approximately 300 articles. All relevant case reports, case series, letters and retrospective reviews describing neurotoxic effects and those discussing mechanisms of neurotoxicity were included. Antibiotic-induced neurotoxic side effects can have a myriad of neurologic presentations. Patients with prior central nervous system (CNS) disease, renal insufficiency and advanced age may be particularly vulnerable. Treatment consists of discontinuation of the offending agent, use of antiepileptic drugs in the case of seizures or status epilepticus and haemodialysis in certain cases. The risk of CNS toxicity may be reduced via dosage adjustments in high risk populations. Awareness of the potential neurotoxic clinical manifestations of various antibiotics and high degree of vigilance in critically ill patients is essential in identifying a potentially serious, though reversible complications of antibiotic therapy particularly with the advent of newer antimicrobial agents.


Asunto(s)
Antibacterianos/efectos adversos , Síndromes de Neurotoxicidad/etiología , Sistema Nervioso Central/efectos de los fármacos , Electroencefalografía , Humanos , Síndromes de Neurotoxicidad/terapia , Factores de Riesgo
20.
Epilepsy Curr ; 21(2): 105-110, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33541118

RESUMEN

Seizures have sleep-wake and circadian patterns in various epilepsies and, in turn, disrupt sleep and circadian rhythms. The resultant sleep deprivation (SD) is an exacerbating factor for seizures that sets up a vicious cycle that can potentially lead to disease progression and even to epilepsy-related mortality. A variety of cellular or network electrophysiological changes and changes in expression of clock-controlled genes or other transcription factors underlie sleep-wake and circadian distribution of seizures, as well as the disruptions seen in both. A broad understanding of these mechanisms may help in designing better treatments to prevent SD-induced seizure exacerbation, disrupt the vicious cycle of disease progression, and reduce epilepsy-related mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA