Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 185(6): 5345-60, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23142874

RESUMEN

Defining "forest land" is a complex issue and has been discussed for decades. Today, a confusing multitude of definitions of forest land are in use making comparison of forest area figures difficult. But currently, comparability is receiving much attention when it comes to install market mechanisms for ecosystem services. Minimum crown cover is among the most frequently employed criteria of forest definitions. However, the size of the reference area on which the crown cover percent is to be measured is usually not defined. But how does a change of the size of the reference area affect the derived forest cover? In this study, we analyze the interactions of the crown cover threshold and the size of the reference area. We start with analyzing the interactions using a simple geometric model of the forest edge. Then, we extend the analysis by simulating artificial landscapes where we study how the interaction is affected by different degrees of forest fragmentation, crown cover proportion, and spatial resolution of the data source used. The simulation showed that large differences in forest cover (>50 %) may result for a fixed crown cover threshold value, just by changing the size of the reference area, where the magnitude of this effect is a function of the chosen threshold value and the spatial configuration of the crowns. As a consequence of the findings, we see an urgent need to complete forest definitions by defining a reference area in order to reduce uncertainties of forest cover estimates.


Asunto(s)
Ecosistema , Agricultura Forestal/métodos , Árboles/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Estadística como Asunto , Incertidumbre
2.
Funct Ecol ; 37(1): 150-161, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37064507

RESUMEN

Climate, topography and the 3D structure of forests are major drivers affecting local species communities. However, little is known about how the specific functional traits of saproxylic (wood-living) beetles, involved in the recycling of wood, might be affected by those environmental characteristics.Here, we combine ecological and morphological traits available for saproxylic beetles and airborne laser scanning (ALS) data in Bayesian trait-based joint species distribution models to study how traits drive the distributions of more than 230 species in temperate forests of Europe.We found that elevation (as a proxy for temperature and precipitation) and the proportion of conifers played important roles in species occurrences while variables related to habitat heterogeneity and forest complexity were less relevant. Furthermore, we showed that local communities were shaped by environmental variation primarily through their ecological traits whereas morphological traits were involved only marginally. As predicted, ecological traits influenced species' responses to forest structure, and to other environmental variation, with canopy niche, wood decay niche and host preference as the most important ecological traits. Conversely, no links between morphological traits and environmental characteristics were observed. Both models, however, revealed strong phylogenetic signal in species' response to environmental characteristics.These findings imply that alterations of climate and tree species composition have the potential to alter saproxylic beetle communities in temperate forests. Additionally, ecological traits help explain species' responses to environmental characteristics and thus should prove useful in predicting their responses to future change. It remains challenging, however, to link simple morphological traits to species' complex ecological niches. Read the free Plain Language Summary for this article on the Journal blog.

4.
Nat Ecol Evol ; 4(9): 1204-1212, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661404

RESUMEN

The habitat heterogeneity hypothesis predicts that biodiversity increases with increasing habitat heterogeneity due to greater niche dimensionality. However, recent studies have reported that richness can decrease with high heterogeneity due to stochastic extinctions, creating trade-offs between area and heterogeneity. This suggests that greater complexity in heterogeneity-diversity relationships (HDRs) may exist, with potential for group-specific responses to different facets of heterogeneity that may only be partitioned out by a simultaneous test of HDRs of several species groups and several facets of heterogeneity. Here, we systematically decompose habitat heterogeneity into six major facets on ~500 temperate forest plots across Germany and quantify biodiversity of 12 different species groups, including bats, birds, arthropods, fungi, lichens and plants, representing 2,600 species. Heterogeneity in horizontal and vertical forest structure underpinned most HDRs, followed by plant diversity, deadwood and topographic heterogeneity, but the relative importance varied even within the same trophic level. Among substantial HDRs, 53% increased monotonically, consistent with the classical habitat heterogeneity hypothesis but 21% were hump-shaped, 25% had a monotonically decreasing slope and 1% showed no clear pattern. Overall, we found no evidence of a single generalizable mechanism determining HDR patterns.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Aves , Alemania , Plantas
5.
Nat Commun ; 10(1): 4757, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628336

RESUMEN

Recent progress in remote sensing provides much-needed, large-scale spatio-temporal information on habitat structures important for biodiversity conservation. Here we examine the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the biodiversity of twelve taxa across five temperate forest regions in central Europe. We show that the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS), the current gold standard in the measurement of forest structure. Our models of different facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling axes representing assemblage composition. We further demonstrate the promising predictive ability of radar-derived data with external validation based on the species composition of birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote sensing will require the coupling of radar data to stratified and standardized collected local species data.


Asunto(s)
Biodiversidad , Bosques , Radar , Tecnología de Sensores Remotos/métodos , Árboles/fisiología , Animales , Aves/clasificación , Aves/fisiología , Escarabajos/clasificación , Escarabajos/fisiología , Conservación de los Recursos Naturales/métodos , Modelos Teóricos , Reproducibilidad de los Resultados , Análisis Espacio-Temporal , Árboles/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA