Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 623(7989): 927-931, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968403

RESUMEN

In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the 'Tasmanian Devil'). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole.

2.
Nature ; 605(7908): 41-45, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508781

RESUMEN

Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original 'black widow', the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20)1, high-energy emission originating from the pulsar2 is irradiating and may eventually destroy3 a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars4, allowing for robust tests of the neutron star equation of state. Here we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate, the optical flux of which varies by a factor of more than ten. ZTF J1406+1222 pushes the boundaries of evolutionary models5, falling below the 80-minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low-metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic Centre, making it a probe of formation channels, neutron star kick physics6 and binary evolution.

3.
Nature ; 595(7865): 39-42, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194021

RESUMEN

White dwarfs represent the last stage of evolution of stars with mass less than about eight times that of the Sun and, like other stars, are often found in binaries1,2. If the orbital period of the binary is short enough, energy losses from gravitational-wave radiation can shrink the orbit until the two white dwarfs come into contact and merge3. Depending on the component masses, the merger can lead to a supernova of type Ia or result in a massive white dwarf4. In the latter case, the white dwarf remnant is expected to be highly magnetized5,6 because of the strong magnetic dynamo that should arise during the merger, and be rapidly spinning from the conservation of the orbital angular momentum7. Here we report observations of a white dwarf, ZTF J190132.9+145808.7, that exhibits these properties, but to an extreme: a rotation period of 6.94 minutes, a magnetic field ranging between 600 megagauss and 900 megagauss over its surface, and a stellar radius of [Formula: see text] kilometres, only slightly larger than the radius of the Moon. Such a small radius implies that the star's mass is close to the maximum white dwarf mass, or Chandrasekhar mass. ZTF J190132.9+145808.7 is likely to be cooling through the Urca processes (neutrino emission from electron capture on sodium) because of the high densities reached in its core.

4.
Nature ; 571(7766): 528-531, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31341301

RESUMEN

General relativity1 predicts that short-orbital-period binaries emit considerable amounts of gravitational radiation. The upcoming Laser Interferometer Space Antenna2 (LISA) is expected to detect tens of thousands of such systems3 but few have been identified4, of which only one5 is eclipsing-the double-white-dwarf binary SDSS J065133.338+284423.37, which has an orbital period of 12.75 minutes. Here we report the discovery of an eclipsing double-white-dwarf binary system, ZTF J153932.16+502738.8, with an orbital period of 6.91 minutes. This system has an orbit so compact that the entire binary could fit within the diameter of the planet Saturn. The system exhibits a deep eclipse, and a double-lined spectroscopic nature. We see rapid orbital decay, consistent with that expected from general relativity. ZTF J153932.16+502738.8 is a strong source of gravitational radiation close to the peak of LISA's sensitivity, and we expect it to be detected within the first week of LISA observations, once LISA launches in approximately 2034.

6.
Nature ; 518(7537): 74-6, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25561176

RESUMEN

Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

7.
BMC Genomics ; 19(1): 180, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29510677

RESUMEN

BACKGROUND: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. RESULTS: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. CONCLUSIONS: The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/normas , Genoma Humano , Hígado/metabolismo , MicroARNs/genética , Placenta/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Embarazo , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA