Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1206816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538847

RESUMEN

Background: The alarming increase in tick-borne pathogens such as human Babesia microti is an existential threat to global public health. It is a protozoan parasitic infection transmitted by numerous species of the genus Babesia. Second, monkeypox has recently emerged as a public health crisis, and the virus has spread around the world in the post-COVID-19 period with a very rapid transmission rate. These two novel pathogens are a new concern for human health globally and have become a significant obstacle to the development of modern medicine and the economy of the whole world. Currently, there are no approved drugs for the treatment of this disease. So, this research gap encourages us to find a potential inhibitor from a natural source. Methods and materials: In this study, a series of natural plant-based biomolecules were subjected to in-depth computational investigation to find the most potent inhibitors targeting major pathogenic proteins responsible for the diseases caused by these two pathogens. Results: Among them, most of the selected natural compounds are predicted to bind tightly to the targeted proteins that are crucial for the replication of these novel pathogens. Moreover, all the molecules have outstanding ADMET properties such as high aqueous solubility, a higher human gastrointestinal absorption rate, and a lack of any carcinogenic or hepatotoxic effects; most of them followed Lipinski's rule. Finally, the stability of the compounds was determined by molecular dynamics simulations (MDs) for 100 ns. During MDs, we observed that the mentioned compounds have exceptional stability against selected pathogens. Conclusion: These advanced computational strategies reported that 11 lead compounds, including dieckol and amentoflavone, exhibited high potency, excellent drug-like properties, and no toxicity. These compounds demonstrated strong binding affinities to the target enzymes, especially dieckol, which displayed superior stability during molecular dynamics simulations. The MM/PBSA method confirmed the favorable binding energies of amentoflavone and dieckol. However, further in vitro and in vivo studies are necessary to validate their efficacy. Our research highlights the role of Dieckol and Amentoflavone as promising candidates for inhibiting both monkeypox and Babesia microti, demonstrating their multifaceted roles in the control of these pathogens.

2.
Heliyon ; 9(10): e20670, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876433

RESUMEN

Background: Helicobacter pylori (H. pylori) is a persistent bacterial inhabitant in the stomachs of approximately half the global populace. This bacterium is directly linked to chronic gastritis, leading to a heightened risk of duodenal and gastric ulcer diseases, and is the predominant risk factor for gastric cancer - the second most common cause of cancer-related deaths globally. The increasing prevalence of antibiotic resistance necessitates the exploration of innovative treatment alternatives to mitigate the H. pylori menace. Methods: Initiating our study, we curated a list of thirty phytochemicals based on previous literature and subjected them to molecular docking studies. Subsequently, eight phytocompounds-Glabridin, Isoliquiritin, Sanguinarine, Liquiritin, Glycyrrhetic acid, Beta-carotin, Diosgenin, and Sarsasapogenin-were meticulously chosen based on superior binding scores. These were further subjected to an extensive computational analysis encompassing ADMET profiling, drug-likeness evaluation, principal component analysis (PCA), and molecular dynamic simulations (MDs) in comparison with the conventional drug, Mitomycin. Results: The natural compounds investigated demonstrated superior docking affinities to H. pylori targets compared to the standard Mitomycin. Notably, the phytocompounds Diosgenin and Sarsasapogenin stood out due to their exceptional binding affinities and pharmacokinetic properties, including favorable ADMET profiles. Conclusion: Our comprehensive and technologically-advanced approach showcases the potential of identified phytocompounds as pioneering therapeutic agents against H. pylori-induced gastric malignancies. In light of our promising in silico results, we recommend these natural compounds as potential candidates for advancing H. pylori-targeted drug development. Given their potential, we strongly advocate for subsequent in vitro and in vivo studies to validate their therapeutic efficacy against this formidable gastrointestinal bacterium.

3.
Front Cell Infect Microbiol ; 13: 1222913, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662005

RESUMEN

Tick-borne Babesiosis is a parasitic infection caused by Babesia microti that can infect both animals and humans and may spread by tick, blood transfusions, and organ transplantation. The current therapeutic options for B. microti are limited, and drug resistance is a concern. This study proposes using computational drug design approaches to find and design an effective drug against B. microti. The study investigated the potentiality of nine natural compounds against the pathogenic human B. microti parasite and identified Vasicinone and Evodiamine as the most promising drugs. The ligand structures were optimized using density functional theory, molecular docking, molecular dynamics simulations, quantum mechanics such as HOMO-LUMO, drug-likeness and theoretical absorption, distribution, metabolism, excretion, and toxicity (ADMET), and pharmacokinetics characteristics performed. The results showed that Vasicinone (-8.6 kcal/mol and -7.8 kcal/mol) and Evodiamine (-8.7 kcal/mol and -8.5 kcal/mol) had the highest binding energy and anti-parasitic activity against B. microti lactate dehydrogenase and B. microti lactate dehydrogenase apo form. The strongest binding energy was reported by Vasicinone and Evodiamine; the compounds were evaluated through molecular dynamics simulation at 100 ns, and their stability when they form complexes with the targeted receptors was determined. Finally, the pkCSM web server is employed to predict the ADMET qualities of specific molecules, which can help prevent negative effects that arise from taking the treatment. The SwissADME web server is used to assess the Lipinski rule of five and drug-likeness properties including topological polar surface area and bioavailability. The Lipinski rule is used to estimate significant drug-likeness. The theoretical pharmacokinetics analysis and drug-likeness of the selected compounds are confirmed to be accepted by the Lipinski rule and have better ADMET features. Thus, to confirm their experimental value, these mentioned molecules should be suggested to carry out in wet lab, pre-clinical, and clinical levels.


Asunto(s)
Babesia microti , Gastrópodos , Parásitos , Animales , Humanos , Simulación del Acoplamiento Molecular , Diseño de Fármacos , Descubrimiento de Drogas , L-Lactato Deshidrogenasa
4.
Front Microbiol ; 14: 1206872, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497547

RESUMEN

The Lassa virus (LASV), an RNA virus prevalent in West and Central Africa, causes severe hemorrhagic fever with a high fatality rate. However, no FDA-approved treatments or vaccines exist. Two crucial proteins, LASV glycoprotein and nucleoprotein, play vital roles in pathogenesis and are potential therapeutic targets. As effective treatments for many emerging infections remain elusive, cutting-edge drug development approaches are essential, such as identifying molecular targets, screening lead molecules, and repurposing existing drugs. Bioinformatics and computational biology expedite drug discovery pipelines, using data science to identify targets, predict structures, and model interactions. These techniques also facilitate screening leads with optimal drug-like properties, reducing time, cost, and complexities associated with traditional drug development. Researchers have employed advanced computational drug design methods such as molecular docking, pharmacokinetics, drug-likeness, and molecular dynamics simulation to investigate evodiamine derivatives as potential LASV inhibitors. The results revealed remarkable binding affinities, with many outperforming standard compounds. Additionally, molecular active simulation data suggest stability when bound to target receptors. These promising findings indicate that evodiamine derivatives may offer superior pharmacokinetics and drug-likeness properties, serving as a valuable resource for professionals developing synthetic drugs to combat the Lassa virus.

5.
J Biomol Struct Dyn ; : 1-16, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131136

RESUMEN

Human T-cell leukemia virus 1 (HTLV-1) associated lymphoma is a devastating malignancy triggered by HTLV-1 infections. We employeda comprehensive drug design and computational strategy in this work to explore the inhibitory activitiesof Astilbin derivatives against HTLV-1-associated lymphoma. We evaluated the stability, binding affinities, and various computational analysis of Astilbin derivatives against target proteins, such as HTLV-1 main protease and HTLV-1 capsid protein. The root mean square deviation (RMSD), root mean square fluctuation, radius of gyration, hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM) were applied to characterize these protein-ligand interactions further. Ligand-03 and ligand-04 exhibited notable binding affinity to HTLV-1 capsid protein, while ligand-05 displayed high binding affinity to HTLV-1 protease. MD simulation analysis revealed that ligand-03, bound to HTLV-1 capsid protein, demonstrated enhanced stability with lower RMSD values and fewer conformational changes, suggesting a promising binding orientation. Ligand-04, despite stable binding, exhibited increased structural deviations, making it less suitable. Ligand-05 demonstrated stable binding to HTLV-1 protease throughout the simulation period at 100 nanoseconds. Hydrogen bond analysis indicated that ligand-05 formed persistent hydrogen bonds with significantresidues, contributing to its stability. PCA highlighted ligand-03's more remarkable conformational changes, while DCCM showed ligand-05's distinct dynamics, indicating its different behavior in the complex. Furthermore, binding free energy calculations supported the favorable interactions of ligand-03 and ligand-04 with HTLV-1 capsid protein, while ligand-05 showed weaker interactions with HTLV-1 protease. Molecular electrostatic potential and frontier molecular orbital analyses provided insights into these compounds' charge distribution and stability. In conclusion, this research found Astilbin derivatives as potential inhibitors of HTLV-1-associated lymphoma. Future attempts at drug development will benefit from the steady interaction landscape provided by Ligand-03, Ligand-04 and Ligand-05, which showed the most attractive binding profile with the target protein. These results open up new opportunities for innovative drug development, and more experimental testing should be done between Astilbin derivatives and HTLV-1-associated lymphoma.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA