Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2218153120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364100

RESUMEN

The evolution of the extinct megatooth shark, Otodus megalodon, and its close phylogenetic relatives remains enigmatic. A central question persists regarding the thermophysiological origins of these large predatory sharks through geologic time, including whether O. megalodon was ectothermic or endothermic (including regional endothermy), and whether its thermophysiology could help to explain the iconic shark's gigantism and eventual demise during the Pliocene. To address these uncertainties, we present unique geochemical evidence for thermoregulation in O. megalodon from both clumped isotope paleothermometry and phosphate oxygen isotopes. Our results show that O. megalodon had an overall warmer body temperature compared with its ambient environment and other coexisting shark species, providing quantitative and experimental support for recent biophysical modeling studies that suggest endothermy was one of the key drivers for gigantism in O. megalodon and other lamniform sharks. The gigantic body size with high metabolic costs of having high body temperatures may have contributed to the vulnerability of Otodus species to extinction when compared to other sympatric sharks that survived the Pliocene epoch.


Asunto(s)
Gigantismo , Tiburones , Animales , Tiburones/fisiología , Filogenia , Regulación de la Temperatura Corporal/fisiología , Tamaño Corporal
2.
Nat Commun ; 13(1): 2980, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641494

RESUMEN

Diet is a crucial trait of an animal's lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ66Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark (Otodus megalodon) and the great white shark (Carcharodon carcharias). We reveal that dietary δ66Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species' trophic level. We observe significant δ66Zn differences among the Otodus and Carcharodon populations implying dietary shifts throughout the Neogene in both genera. Notably, Early Pliocene sympatric C. carcharias and O. megalodon appear to have occupied a similar mean trophic level, a finding that may hold clues to the extinction of the gigantic Neogene megatooth shark.


Asunto(s)
Ecosistema , Tiburones , Animales , Ecología , Estado Nutricional , Isótopos de Zinc
3.
Sci Adv ; 8(25): eabl6529, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731884

RESUMEN

Trophic position is a fundamental characteristic of animals, yet it is unknown in many extinct species. In this study, we ground-truth the 15N/14N ratio of enameloid-bound organic matter (δ15NEB) as a trophic level proxy by comparison to dentin collagen δ15N and apply this method to the fossil record to reconstruct the trophic level of the megatooth sharks (genus Otodus). These sharks evolved in the Cenozoic, culminating in Otodus megalodon, a shark with a maximum body size of more than 15 m, which went extinct 3.5 million years ago. Very high δ15NEB values (22.9 ± 4.4‰) of O. megalodon from the Miocene and Pliocene show that it occupied a higher trophic level than is known for any marine species, extinct or extant. δ15NEB also indicates a dietary shift in sharks of the megatooth lineage as they evolved toward the gigantic O. megalodon, with the highest trophic level apparently reached earlier than peak size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA