Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 59(3): 879-891, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37329218

RESUMEN

BACKGROUND: Perfusion and diffusion coexist in the placenta and can be altered by pathologies. The two-perfusion model, where f1 and, f2 are the perfusion-fraction of the fastest and slowest perfusion compartment, respectively, and D is the diffusion coefficient, may help differentiate between normal and impaired placentas. PURPOSE: Investigate the potential of the two-perfusion IVIM model in differentiating between normal and abnormal placentas. STUDY-TYPE: Retrospective, case-control. POPULATION: 43 normal pregnancy, 9 fetal-growth-restriction (FGR), 6 small-for-gestational-age (SGA), 4 accreta, 1 increta and 2 percreta placentas. FIELD STRENGTH/SEQUENCE: Diffusion-weighted-echo planar imaging sequence at 1.5 T. ASSESSMENT: Voxel-wise signal-correction and fitting-controls were used to avoid overfitting obtaining that two-perfusion model fitted the observed data better than the IVIM model (Akaike weight: 0.94). The two-perfusion parametric-maps were quantified from ROIs in the fetal and maternal placenta and in the accretion zone of accreta placentas. The diffusion coefficient D was evaluated using a b ≥ 200 sec/mm2 -mono-exponential decay fit. IVIM metrics were quantified to fix f1 + f2 = fIVIM . STATISTICAL-TESTS: ANOVA with Dunn-Sidák's post-hoc correction and Cohen's d test were used to compare parameters between groups. Spearman's coefficient was evaluated to study the correlation between variables. A P-value<0.05 indicated a statistically significant difference. RESULTS: There was a significant difference in f1 between FGR and SGA, and significant differences in f2 and fIVIM between normal and FGR. The percreta + increta group showed the highest f1 values (Cohen's d = -2.66). The f2 between normal and percreta + increta groups showed Cohen's d = 1.12. Conversely, fIVIM had a small effective size (Cohen's d = 0.32). In the accretion zone, a significant correlation was found between f2 and GA (ρ = 0.90) whereas a significant negative correlation was found between fIVIM and D (ρ = -0.37 in fetal and ρ = -0.56 in maternal side) and f2 and D (ρ = -0.38 in fetal and ρ = -0.51 in maternal side) in normal placentas. CONCLUSION: The two-perfusion model provides complementary information to IVIM parameters that may be useful in identifying placenta impairment. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Placenta Accreta , Placenta , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Perfusión , Retardo del Crecimiento Fetal , Movimiento (Física)
2.
Diagnostics (Basel) ; 14(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786348

RESUMEN

BACKGROUND: There is a growing interest in bone tissue MRI and an even greater interest in using low-cost MR scanners. However, the characteristics of bone MRI remain to be fully defined, especially at low field strength. This study aimed to characterize the signal-to-noise ratio (SNR), T2, and T2* in spongy bone at 0.3 T, 1.5 T, and 3.0 T. Furthermore, relaxation times were characterized as a function of bone-marrow lipid/water ratio content and trabecular bone density. METHODS: Thirty-two women in total underwent an MR-imaging investigation of the calcaneus at 0.3 T, 1.5 T, and 3.0 T. MR-spectroscopy was performed at 3.0 T to assess the fat/water ratio. SNR, T2, and T2* were quantified in distinct calcaneal regions (ST, TC, and CC). ANOVA and Pearson correlation statistics were used. RESULTS: SNR increase depends on the magnetic field strength, acquisition sequence, and calcaneal location. T2* was different at 3.0 T and 1.5 T in ST, TC, and CC. Relaxation times decrease as much as the magnetic field strength increases. The significant linear correlation between relaxation times and fat/water found in healthy young is lost in osteoporotic subjects. CONCLUSION: The results have implications for the possible use of relaxation vs. lipid/water marrow content for bone quality assessment and the development of quantitative MRI diagnostics at low field strength.

3.
Placenta ; 145: 38-44, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052124

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been a major global health problem since December 2019. This work aimed to investigate whether pregnant women's mild and moderate SARS-CoV-2 infection was associated with microstructural and vascular changes in the placenta observable in vivo by Intravoxel Incoherent Motion (IVIM) at different gestational ages (GA). METHODS: This was a retrospective, nested case-control of pregnant women during the SARS-CoV-2 pandemic (COVID-19 group, n = 14) compared to pre-pandemic healthy controls (n = 19). MRI IVIM protocol at 1.5T was constituted of diffusion-weighted (DW) images with TR/TE = 3100/76 ms and 10 b-values (0,10,30,50,75,100,200,400,700,1000s/mm2). Differences between IVIM parameters D (diffusion), and f (fractional perfusion) quantified in the two groups were evaluated using the ANOVA test with Bonferroni correction and linear correlation between IVIM metrics and GA, COVID-19 duration, the delay time between a positive SARS-CoV-2 test and MRI examination (delay-time exam+) was studied by Pearson-test. RESULTS: D was significantly higher in the COVID-19 placentas compared to that of the age-matched healthy group (p < 0.04 in fetal and p < 0.007 in maternal site). No significant difference between f values was found in the two groups suggesting no-specific microstructural damage with no perfusion alteration (potentially quantified by f) in mild/moderate SARS-Cov-2 placentas. A significant negative correlation was found between D and GA in the COVID-19 placentas whereas no significant correlation was found in the control placentas reflecting a possible accelerated senescence process due to COVID-19. DISCUSSION: We report impaired microstructural placental development during pregnancy and the absence of perfusion-IVIM parameter changes that may indicate no perfusion changing through microvessels and microvilli in the placentas of pregnancies with mild/moderate SARS-Cov-2 after reaching negativity.


Asunto(s)
COVID-19 , Placenta , Humanos , Femenino , Embarazo , Placenta/diagnóstico por imagen , Placenta/irrigación sanguínea , SARS-CoV-2 , Estudios Retrospectivos , COVID-19/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Placentación
4.
Eur Radiol Exp ; 7(1): 41, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558926

RESUMEN

Fetal magnetic resonance imaging (fetal MRI) is usually performed as a second-level examination following routine ultrasound examination, generally exploiting morphological and diffusion MRI sequences. The objective of this review is to describe the novelties and new applications of fetal MRI, focusing on three main aspects: the new sequences with their applications, the transition from 1.5-T to 3-T magnetic field, and the new applications of artificial intelligence software. This review was carried out by consulting the MEDLINE references (PubMed) and including only peer-reviewed articles written in English. Among the most important novelties in fetal MRI, we find the intravoxel incoherent motion model which allow to discriminate the diffusion from the perfusion component in fetal and placenta tissues. The transition from 1.5-T to 3-T magnetic field allowed for higher quality images, thanks to the higher signal-to-noise ratio with a trade-off of more frequent artifacts. The application of motion-correction software makes it possible to overcome movement artifacts by obtaining higher quality images and to generate three-dimensional images useful in preoperative planning.Relevance statementThis review shows the latest developments offered by fetal MRI focusing on new sequences, transition from 1.5-T to 3-T magnetic field and the emerging role of AI software that are paving the way for new diagnostic strategies.Key points• Fetal magnetic resonance imaging (MRI) is a second-line imaging after ultrasound.• Diffusion-weighted imaging and intravoxel incoherent motion sequences provide quantitative biomarkers on fetal microstructure and perfusion.• 3-T MRI improves the detection of cerebral malformations.• 3-T MRI is useful for both body and nervous system indications.• Automatic MRI motion tracking overcomes fetal movement artifacts and improve fetal imaging.


Asunto(s)
Inteligencia Artificial , Imagen por Resonancia Magnética , Embarazo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Algoritmos , Programas Informáticos
5.
J Pers Med ; 13(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37241031

RESUMEN

This study aimed to investigate the Diffusion-Tensor-Imaging (DTI) potential in the detection of microstructural changes in prostate cancer (PCa) in relation to the diffusion weight (b-value) and the associated diffusion length lD. Thirty-two patients (age range = 50-87 years) with biopsy-proven PCa underwent Diffusion-Weighted-Imaging (DWI) at 3T, using single non-zero b-value or groups of b-values up to b = 2500 s/mm2. The DTI maps (mean-diffusivity, MD; fractional-anisotropy, FA; axial and radial diffusivity, D// and D┴), visual quality, and the association between DTI-metrics and Gleason Score (GS) and DTI-metrics and age were discussed in relation to diffusion compartments probed by water molecules at different b-values. DTI-metrics differentiated benign from PCa tissue (p ≤ 0.0005), with the best discriminative power versus GS at b-values ≥ 1500 s/mm2, and for b-values range 0-2000 s/mm2, when the lD is comparable to the size of the epithelial compartment. The strongest linear correlations between MD, D//, D┴, and GS were found at b = 2000 s/mm2 and for the range 0-2000 s/mm2. A positive correlation between DTI parameters and age was found in benign tissue. In conclusion, the use of the b-value range 0-2000 s/mm2 and b-value = 2000 s/mm2 improves the contrast and discriminative power of DTI with respect to PCa. The sensitivity of DTI parameters to age-related microstructural changes is worth consideration.

6.
J Pers Med ; 12(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35455755

RESUMEN

The aim of this study was to determine whether quantitative parameters obtained from intravoxel incoherent motion (IVIM) model at baseline magnetic resonance imaging (MRI) correlate with histological parameters and response to neoadjuvant chemotherapy in patients with locally advanced cervical cancer (LACC). METHODS: Twenty patients with biopsy-proven cervical cancer, staged as LACC on baseline MRI and addressed for neoadjuvant chemotherapy were enrolled. At treatment completion, tumor response was assessed with a follow-up MRI evaluated using the revised response evaluation criteria in solid tumors (RECIST; version 1.1), and patients were considered good responders (GR) if they had complete response or partial remission, and poor responders/non-responders (PR/NR) if they had stable or progressive disease. MRI protocol included conventional diffusion-weighted imaging (DWI; b = 0 and 1000 s/mm2) and IVIM acquisition using eight b-values (range: 0-1500 s/mm2). MR-images were analyzed using a dedicated software to obtain quantitative parameters: diffusion (D), pseudo-diffusion (D*), and perfusion fraction (fp) from the IVIM model; apparent diffusion coefficient (ADC) from conventional DWI. Histologic subtype, grading, and tumor-infiltrating lymphocytes (TILs) were assessed in each LACC. RESULTS: D showed significantly higher values in GR patients (p = 0.001) and in moderate/high TILs (p = 0.018). Fp showed significantly higher values in squamous cell tumors (p = 0.006). CONCLUSIONS: D extracted from the IVIM model could represent a promising tool to identify tumor aggressiveness and predict response to therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA