Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 165(5): 1147-1159, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27114035

RESUMEN

The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Animales , Aorta/patología , Calcineurina/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Miofibrillas/metabolismo
2.
Cell ; 160(4): 595-606, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25640239

RESUMEN

Functional micropeptides can be concealed within RNAs that appear to be noncoding. We discovered a conserved micropeptide, which we named myoregulin (MLN), encoded by a skeletal muscle-specific RNA annotated as a putative long noncoding RNA. MLN shares structural and functional similarity with phospholamban (PLN) and sarcolipin (SLN), which inhibit SERCA, the membrane pump that controls muscle relaxation by regulating Ca(2+) uptake into the sarcoplasmic reticulum (SR). MLN interacts directly with SERCA and impedes Ca(2+) uptake into the SR. In contrast to PLN and SLN, which are expressed in cardiac and slow skeletal muscle in mice, MLN is robustly expressed in all skeletal muscle. Genetic deletion of MLN in mice enhances Ca(2+) handling in skeletal muscle and improves exercise performance. These findings identify MLN as an important regulator of skeletal muscle physiology and highlight the possibility that additional micropeptides are encoded in the many RNAs currently annotated as noncoding.


Asunto(s)
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , ARN Largo no Codificante/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/química , Músculo Esquelético/citología , Miocardio/metabolismo , Estructura Secundaria de Proteína , Proteolípidos/metabolismo , ARN Largo no Codificante/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Alineación de Secuencia
3.
Circ Res ; 133(12): 1006-1021, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37955153

RESUMEN

BACKGROUND: The p.Arg14del variant of the PLN (phospholamban) gene causes cardiomyopathy, leading to severe heart failure. Calcium handling defects and perinuclear PLN aggregation have both been suggested as pathological drivers of this disease. Dwarf open reading frame (DWORF) has been shown to counteract PLN regulatory calcium handling function in the sarco/endoplasmic reticulum (S/ER). Here, we investigated the potential disease-modulating action of DWORF in this cardiomyopathy and its effects on calcium handling and PLN aggregation. METHODS: We studied a PLN-R14del mouse model, which develops cardiomyopathy with similar characteristics as human patients, and explored whether cardiac DWORF overexpression could delay cardiac deterioration. To this end, R14Δ/Δ (homozygous PLN-R14del) mice carrying the DWORF transgene (R14Δ/ΔDWORFTg [R14Δ/Δ mice carrying the DWORF transgene]) were used. RESULTS: DWORF expression was suppressed in hearts of R14Δ/Δ mice with severe heart failure. Restoration of DWORF expression in R14Δ/Δ mice delayed cardiac fibrosis and heart failure and increased life span >2-fold (from 8 to 18 weeks). DWORF accelerated sarcoplasmic reticulum calcium reuptake and relaxation in isolated cardiomyocytes with wild-type PLN, but in R14Δ/Δ cardiomyocytes, sarcoplasmic reticulum calcium reuptake and relaxation were already enhanced, and no differences were detected between R14Δ/Δ and R14Δ/ΔDWORFTg. Rather, DWORF overexpression delayed the appearance and formation of large pathogenic perinuclear PLN clusters. Careful examination revealed colocalization of sarcoplasmic reticulum markers with these PLN clusters in both R14Δ/Δ mice and human p.Arg14del PLN heart tissue, and hence these previously termed aggregates are comprised of abnormal organized S/ER. This abnormal S/ER organization in PLN-R14del cardiomyopathy contributes to cardiomyocyte cell loss and replacement fibrosis, consequently resulting in cardiac dysfunction. CONCLUSIONS: Disorganized S/ER is a major characteristic of PLN-R14del cardiomyopathy in humans and mice and results in cardiomyocyte death. DWORF overexpression delayed PLN-R14del cardiomyopathy progression and extended life span in R14Δ/Δ mice, by reducing abnormal S/ER clusters.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Longevidad , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101990

RESUMEN

Emerging evidence indicates that a subset of RNA molecules annotated as noncoding contain short open reading frames that code for small functional proteins called microproteins, which have largely been overlooked due to their small size. To search for cardiac-expressed microproteins, we used a comparative genomics approach and identified mitolamban (Mtlbn) as a highly conserved 47-amino acid transmembrane protein that is abundantly expressed in the heart. Mtlbn localizes specifically to the inner mitochondrial membrane where it interacts with subunits of complex III of the electron transport chain and with mitochondrial respiratory supercomplexes. Genetic deletion of Mtlbn in mice altered complex III assembly dynamics and reduced complex III activity. Unbiased metabolomic analysis of heart tissue from Mtlbn knockout mice further revealed an altered metabolite profile consistent with deficiencies in complex III activity. Cardiac-specific Mtlbn overexpression in transgenic (TG) mice induced cardiomyopathy with histological, biochemical, and ultrastructural pathologic features that contributed to premature death. Metabolomic analysis and biochemical studies indicated that hearts from Mtlbn TG mice exhibited increased oxidative stress and mitochondrial dysfunction. These findings reveal Mtlbn as a cardiac-expressed inner mitochondrial membrane microprotein that contributes to mitochondrial electron transport chain activity through direct association with complex III and the regulation of its assembly and function.


Asunto(s)
Cardiomiopatías/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatías/genética , Células Cultivadas , Complejo III de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Proteínas Mitocondriales/genética , Especificidad de Órganos
5.
Am J Physiol Cell Physiol ; 325(4): C807-C816, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642234

RESUMEN

Mitochondria rely upon the coordination of protein import, protein translation, and proper functioning of oxidative phosphorylation (OXPHOS) complexes I-V to sustain the activities of life for an organism. Each process is dependent upon the function of profoundly large protein complexes found in the mitochondria [translocase of the outer mitochondrial membrane (TOMM) complex, translocase of the inner mitochondrial membrane (TIMM) complex, OXPHOS complexes, mitoribosomes]. These massive protein complexes, in some instances more than one megadalton, are built up from numerous protein subunits of varying sizes, including many proteins that are ≤100-150 amino acids. However, these small proteins, termed microproteins, not only act as cogs in large molecular machines but also have important steps in inhibiting or promoting the intrinsic pathway of apoptosis, coordinate responses to cellular stress, and even act as hormones. This review focuses on microproteins that occupy the mitochondria and are critical for its function. Although the microprotein field is relatively new, researchers have long recognized the existence of these mitochondrial proteins as critical components of virtually all aspects of mitochondrial biology. Thus, recent studies estimating that hundreds of new microproteins of unknown function exist and are missing from current genome annotations suggests that the mitochondrial "microproteome" is a rich area for future biological investigation.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Fosforilación Oxidativa , Apoptosis , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Micropéptidos
7.
Exp Cell Res ; 388(2): 111853, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31978386

RESUMEN

Proteins are critical components of biological membranes and play key roles in many essential cellular processes. Membrane proteins are a structurally and functionally diverse family of proteins that have recently expanded to include a number of newly discovered tiny proteins called microproteins, or micropeptides. These microproteins are generated from small open reading frames, which produce protein products that are less than 100 amino acids in length. While not all microproteins are membrane proteins, this review will focus specifically on this subclass to highlight some of the important biological activities that have been ascribed to these molecules and to emphasize their promise as exciting new players in membrane biology.


Asunto(s)
Membrana Celular/metabolismo , Genoma Humano , Proteínas de la Membrana/metabolismo , Sistemas de Lectura Abierta/genética , Animales , Humanos , Proteínas de la Membrana/genética
9.
J Biol Chem ; 293(18): 6915-6924, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29540486

RESUMEN

Cardiac energy is produced primarily by oxidation of fatty acids and glucose, with the relative contributions of each nutrient being sensitive to changes in substrate availability and energetic demand. A major contributor to cardiac metabolic flexibility is pyruvate dehydrogenase (PDH), which converts glucose-derived pyruvate to acetyl-CoA within the mitochondria. PDH is inhibited by phosphorylation dependent on the competing activities of pyruvate dehydrogenase kinases (PDK1-4) and phosphatases (PDP1-2). A single high-fat meal increases cardiac PDK4 content and subsequently inhibits PDH activity, reducing pyruvate utilization when abundant fatty acids are available. In this study, we demonstrate that diet-induced increases in PDK4 are reversible and characterize a novel pathway that regulates PDK4 degradation in response to the cardiac metabolic environment. We found that PDK4 degradation is promoted by CoA (CoASH), the levels of which declined in mice fed a high-fat diet and normalized following transition to a control diet. We conclude that CoASH functions as a metabolic sensor linking the rate of PDK4 degradation to fatty acid availability in the heart. However, prolonged high-fat feeding followed by return to a low-fat diet resulted in persistent in vitro sensitivity of PDH to fatty acid-induced inhibition despite reductions in PDK4 content. Moreover, increases in the levels of proteins responsible for ß-oxidation and rates of palmitate oxidation by isolated cardiac mitochondria following long-term consumption of high dietary fat persisted after transition to the control diet. We propose that these changes prime PDH for inhibition upon reintroduction of fatty acids.


Asunto(s)
Coenzima A/metabolismo , Dieta Alta en Grasa , Miocardio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Dieta con Restricción de Grasas , Ácidos Grasos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Oxidación-Reducción , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Mensajero/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(2): 338-43, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26719419

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart.


Asunto(s)
Envejecimiento/genética , Sistemas CRISPR-Cas/genética , Eliminación de Gen , Miocardio/metabolismo , Animales , Cardiomegalia/complicaciones , Cardiomegalia/patología , Separación Celular , Dependovirus/metabolismo , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Ratones Transgénicos , Modelos Animales , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Especificidad de Órganos/genética , ARN Guía de Kinetoplastida/metabolismo
13.
Circ Res ; 115(12): 976-85, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25332207

RESUMEN

RATIONALE: G protein-coupled receptor kinases (GRKs) acting in the cardiomyocyte regulate important signaling events that control cardiac function. Both GRK2 and GRK5, the predominant GRKs expressed in the heart, have been shown to be upregulated in failing human myocardium. Although the canonical role of GRKs is to desensitize G protein-coupled receptors via phosphorylation, it has been demonstrated that GRK5, unlike GRK2, can reside in the nucleus of myocytes and exert G protein-coupled receptor-independent effects that promote maladaptive cardiac hypertrophy and heart failure. OBJECTIVE: To explore novel mechanisms by which GRK5 acting in the nucleus of cardiomyocytes participates in pathological cardiac hypertrophy. METHODS AND RESULTS: In this study, we have found that GRK5-mediated pathological cardiac hypertrophy involves the activation of the nuclear factor of activated T cells (NFAT) because GRK5 causes enhancement of NFAT-mediated hypertrophic gene transcription. Transgenic mice with cardiomyocyte-specific GRK5 overexpression activate an NFAT-reporter in mice basally and after hypertrophic stimulation, including transverse aortic constriction and phenylephrine treatment. Complimentary to this, GRK5 null mice exhibit less NFAT transcriptional activity after transverse aortic constriction. Furthermore, the loss of NFATc3 expression in the heart protected GRK5 overexpressing transgenic mice from the exaggerated hypertrophy and early progression to heart failure seen after transverse aortic constriction. Molecular studies suggest that GRK5 acts in concert with NFAT to increase hypertrophic gene transcription in the nucleus via GRK5's ability to bind DNA directly without a phosphorylation event. CONCLUSIONS: GRK5, acting in a kinase independent manner, is a facilitator of NFAT activity and part of a DNA-binding complex responsible for pathological hypertrophic gene transcription.


Asunto(s)
Cardiomegalia/enzimología , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Miocitos Cardíacos/enzimología , Factores de Transcripción NFATC/metabolismo , Animales , Sitios de Unión , Cardiomegalia/etiología , Cardiomegalia/genética , Cardiomegalia/patología , Línea Celular , Núcleo Celular/enzimología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Regiones Promotoras Genéticas , Ratas , Factores de Tiempo , Transcripción Genética , Transfección
14.
Circ Res ; 115(6): 567-580, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25047165

RESUMEN

RATIONALE: The cellular and molecular basis for post-myocardial infarction (MI) structural and functional remodeling is not well understood. OBJECTIVE: Our aim was to determine if Ca2+ influx through transient receptor potential canonical (TRPC) channels contributes to post-MI structural and functional remodeling. METHODS AND RESULTS: TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte-specific expression of a dominant-negative (loss-of-function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival in mice. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 overexpression in adult feline myocytes induced calcineurin (Cn)-nuclear factor of activated T-cells (NFAT)-mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in adult feline myocytes increased rested state contractions and increased spontaneous sarcoplasmic reticulum Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady-state pacing, likely because of enhanced sarcoplasmic reticulum Ca2+ leak. CONCLUSIONS: Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function.


Asunto(s)
Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Canales de Potencial de Receptor Transitorio/fisiología , Remodelación Ventricular/fisiología , Animales , Calcio/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Gatos , Células Cultivadas , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción/fisiología , Ratones , Contracción Miocárdica/fisiología , Retículo Sarcoplasmático/metabolismo
15.
Circ Res ; 114(11): 1700-1712, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24718482

RESUMEN

RATIONALE: Sorafenib is an effective treatment for renal cell carcinoma, but recent clinical reports have documented its cardiotoxicity through an unknown mechanism. OBJECTIVE: Determining the mechanism of sorafenib-mediated cardiotoxicity. METHODS AND RESULTS: Mice treated with sorafenib or vehicle for 3 weeks underwent induced myocardial infarction (MI) after 1 week of treatment. Sorafenib markedly decreased 2-week survival relative to vehicle-treated controls, but echocardiography at 1 and 2 weeks post MI detected no differences in cardiac function. Sorafenib-treated hearts had significantly smaller diastolic and systolic volumes and reduced heart weights. High doses of sorafenib induced necrotic death of isolated myocytes in vitro, but lower doses did not induce myocyte death or affect inotropy. Histological analysis documented increased myocyte cross-sectional area despite smaller heart sizes after sorafenib treatment, further suggesting myocyte loss. Sorafenib caused apoptotic cell death of cardiac- and bone-derived c-kit+ stem cells in vitro and decreased the number of BrdU+ (5-bromo-2'-deoxyuridine+) myocytes detected at the infarct border zone in fixed tissues. Sorafenib had no effect on infarct size, fibrosis, or post-MI neovascularization. When sorafenib-treated animals received metoprolol treatment post MI, the sorafenib-induced increase in post-MI mortality was eliminated, cardiac function was improved, and myocyte loss was ameliorated. CONCLUSIONS: Sorafenib cardiotoxicity results from myocyte necrosis rather than from any direct effect on myocyte function. Surviving myocytes undergo pathological hypertrophy. Inhibition of c-kit+ stem cell proliferation by inducing apoptosis exacerbates damage by decreasing endogenous cardiac repair. In the setting of MI, which also causes large-scale cell loss, sorafenib cardiotoxicity dramatically increases mortality.


Asunto(s)
Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Corazón/efectos de los fármacos , Infarto del Miocardio/mortalidad , Niacinamida/análogos & derivados , Compuestos de Fenilurea/efectos adversos , Compuestos de Fenilurea/farmacología , Animales , Apoptosis/efectos de los fármacos , Gatos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Masculino , Metoprolol/farmacología , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Niacinamida/efectos adversos , Niacinamida/farmacología , Proteínas Proto-Oncogénicas c-kit/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Sorafenib
16.
J Mol Cell Cardiol ; 86: 179-86, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26231084

RESUMEN

RATIONALE: There is a current need for the development of new therapies for patients with heart failure. OBJECTIVE: We test the effects of members of the corticotropin-releasing factor (CRF) family of peptides on myocyte contractility to validate them as potential heart failure therapeutics. METHODS AND RESULTS: Adult feline left ventricular myocytes (AFMs) were isolated and contractility was assessed in the presence and absence of CRF peptides Urocortin 2 (UCN2), Urocortin 3 (UCN3), Stresscopin (SCP), and the ß-adrenergic agonist isoproterenol (Iso). An increase in fractional shortening and peak Ca(2+) transient amplitude was seen in the presence of all CRF peptides. A decrease in Ca(2+) decay rate (Tau) was also observed at all concentrations tested. cAMP generation was measured by ELISA in isolated AFMs in response to the CRF peptides and Iso and significant production was seen at all concentrations and time points tested. CONCLUSIONS: The CRF family of peptides effectively increases cardiac contractility and should be evaluated as potential novel therapeutics for heart failure patients.


Asunto(s)
Hormona Liberadora de Corticotropina/administración & dosificación , Insuficiencia Cardíaca/tratamiento farmacológico , Contracción Miocárdica/efectos de los fármacos , Urocortinas/administración & dosificación , Animales , Gatos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología
17.
J Mol Cell Cardiol ; 87: 38-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26241845

RESUMEN

Stromal interaction molecule 1 (STIM1) is a Ca(2+) sensor that partners with Orai1 to elicit Ca(2+) entry in response to endoplasmic reticulum (ER) Ca(2+) store depletion. While store-operated Ca(2+) entry (SOCE) is important for maintaining ER Ca(2+) homeostasis in non-excitable cells, it is unclear what role it plays in the heart, although STIM1 is expressed in the heart and upregulated during disease. Here we analyzed transgenic mice with STIM1 overexpression in the heart to model the known increase of this protein in response to disease. As expected, STIM1 transgenic myocytes showed enhanced Ca(2+) entry following store depletion and partial co-localization with the type 2 ryanodine receptor (RyR2) within the sarcoplasmic reticulum (SR), as well as enrichment around the sarcolemma. STIM1 transgenic mice exhibited sudden cardiac death as early as 6weeks of age, while mice surviving past 12weeks of age developed heart failure with hypertrophy, induction of the fetal gene program, histopathology and mitochondrial structural alterations, loss of ventricular functional performance and pulmonary edema. Younger, pre-symptomatic STIM1 transgenic mice exhibited enhanced pathology following pressure overload stimulation or neurohumoral agonist infusion, compared to controls. Mechanistically, cardiac myocytes isolated from STIM1 transgenic mice displayed spontaneous Ca(2+) transients that were prevented by the SOCE blocker SKF-96365, increased L-type Ca(2+) channel (LTCC) current, and enhanced Ca(2+) spark frequency. Moreover, adult cardiac myocytes from STIM1 transgenic mice showed both increased diastolic Ca(2+) and maximal transient amplitude but no increase in total SR Ca(2+) load. Associated with this enhanced Ca(2+) profile was an increase in cardiac nuclear factor of activated T-cells (NFAT) and Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity. We conclude that STIM1 has an unexpected function in the heart where it alters communication between the sarcolemma and SR resulting in greater Ca(2+) flux and a leaky SR compartment.


Asunto(s)
Canales de Calcio/biosíntesis , Calcio/metabolismo , Cardiomiopatías/genética , Retículo Sarcoplasmático/metabolismo , Animales , Canales de Calcio/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/biosíntesis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Ratones , Ratones Transgénicos , Células Musculares/metabolismo , Células Musculares/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patología , Molécula de Interacción Estromal 1
18.
Circulation ; 130(20): 1800-11, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25205804

RESUMEN

BACKGROUND: Enhanced arginine vasopressin levels are associated with increased mortality during end-stage human heart failure, and cardiac arginine vasopressin type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased ß-adrenergic receptor (ßAR) responsiveness. This led us to hypothesize that V1AR signaling regulates ßAR responsiveness and in doing so contributes to development of heart failure. METHODS AND RESULTS: Transaortic constriction resulted in decreased cardiac function and ßAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased ßAR ligand affinity, as well as ßAR-induced Ca(2+) mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of ßAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/G protein receptor kinase-dependent manner. CONCLUSIONS: This newly discovered relationship between cardiac V1AR and ßAR may be informative for the treatment of patients with acute decompensated heart failure and elevated arginine vasopressin.


Asunto(s)
Cardiomiopatía Hipertrófica/fisiopatología , Contracción Miocárdica/fisiología , Receptores Adrenérgicos beta/fisiología , Receptores de Vasopresinas/fisiología , Sistemas de Mensajero Secundario/fisiología , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Arginina Vasopresina/farmacología , Señalización del Calcio/efectos de los fármacos , Cardiomiopatía Hipertrófica/complicaciones , Gatos , Línea Celular Tumoral , Colforsina/farmacología , AMP Cíclico/biosíntesis , Quinasas de Receptores Acoplados a Proteína-G/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Genes Reporteros , Células HEK293 , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Humanos , Indoles/farmacología , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Contracción Miocárdica/efectos de los fármacos , Pirrolidinas/farmacología , Receptores de Vasopresinas/biosíntesis , Receptores de Vasopresinas/genética , Proteínas Recombinantes de Fusión/metabolismo , Rolipram/farmacología , Sistemas de Mensajero Secundario/efectos de los fármacos
20.
Circ Res ; 113(5): 539-52, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23801066

RESUMEN

RATIONALE: Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE: To determine the mechanism by which novel bone-derived stem cells support the injured heart. METHODS AND RESULTS: Cortical bone-derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells- or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells-treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. CONCLUSIONS: CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.


Asunto(s)
Huesos/citología , Transdiferenciación Celular , Células Endoteliales/citología , Células Madre Multipotentes/fisiología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Comunicación Paracrina/fisiología , Proteínas Angiogénicas/biosíntesis , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Antígenos Ly/biosíntesis , Antígenos Ly/genética , Biomarcadores , Células Cultivadas/citología , Células Cultivadas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/trasplante , Infarto del Miocardio/patología , Neovascularización Fisiológica/genética , Proteínas Proto-Oncogénicas c-kit/biosíntesis , Proteínas Proto-Oncogénicas c-kit/genética , Remodelación Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA