Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 8(20): 18047-18057, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251148

RESUMEN

Corrosion poses safety and operational challenges in the oil and gas field, particularly in a sour environment. Corrosion inhibitors (CIs) are thus employed to protect the integrity of industrial assets. However, CIs have the potential to dramatically impair the effectiveness of other co-additives, such as kinetic hydrate inhibitors (KHIs). Here, we propose an acryloyl-based copolymer, previously used as a KHI, as an effective CI. The copolymer formulation provided a corrosion inhibition efficiency of up to 90% in a gas production environment, implying that it can reduce or even eliminate the need for an additional dedicated CI in the system. It also demonstrated a corrosion inhibition efficiency of up to 60% under field-simulated conditions for a wet sour crude processing environment. Molecular modeling suggests that the enhanced corrosion protection is imparted by the favorable interaction of the heteroatoms of the copolymer with the steel surface, potentially displacing adhered water molecules. All in all, we show that an acryloyl-based copolymer with dual functionalities can potentially overcome issues caused by incompatibilities in a sour environment, resulting in significant cost savings and operational ease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA