Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; : e202400561, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172538

RESUMEN

Protein phosphatase-1 (PP1) is a ubiquitous enzyme counteracting hundreds of kinases in cells. PP1 interacts with regulatory proteins via an RVxF peptide motif that binds to a hydrophobic groove on the enzyme. PP1-disrupting peptides (PDPs) compete with these regulatory proteins, leading to the release of the active PP1 subunit and promoting substrate dephosphorylation. Building on previous strategies employing the ortho-nitrobenzyl (o-Nb) group, we introduced coumarin derivatives into a PDP via an ether bond to explore their effects on PP1 activity. Surprisingly, our study revealed that the coumarin-caged peptides (PDP-DEACM and PDP-CM) underwent a photo-Claisen rearrangement, resulting in an unexpected hyperactivation of PP1. Our findings underscore the importance of linker design in controlling uncaging efficiency and highlight the need for comprehensive in vitro analysis before cellular experiments.

2.
J Org Chem ; 89(6): 3844-3856, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38413005

RESUMEN

Herein, we present a straightforward synthetic route for the design and synthesis of diverse heterobifunctional cyanine 5 dyes. We optimized the workup by harnessing the pH- and functional group-dependent solubility of the asymmetric cyanine 5 dyes. Therefore, purification through chromatography is deferred until the last synthesis step. Demonstrating successful large-scale synthesis, our modular approach prevents functional group degradation by introducing them in the last synthesis step. These modifiable heterobifunctional dyes offer significant utility in advancing biological studies.


Asunto(s)
Colorantes , Colorantes Fluorescentes , Carbocianinas , Solubilidad , Colorantes Fluorescentes/química
3.
Molecules ; 25(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287255

RESUMEN

In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and ß-cyclodextrin (ß-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/ß-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm-1 upon complexation. The aqueous solutions were studied by NMR spectroscopy. As routine NMR spectra did not show any signs of complexation, we have analyzed the diffusion attenuation of spin-echo signals and the dependence of the population factor of slowly diffusing components on the diffusion time (diffusion NMR of pulsed-field gradient (PFG) NMR). The analysis has revealed that, at each moment, ~60% of 5-FU molecules form a complex with ß-CD and its lifetime is ca. 13.5 ms. It is likely to be an inclusion complex, judging from the independence of the diffusion coefficient of ß-CD on complexation. The obtained results could be important for future attempts of finding better methods of targeted anticancer drug delivery.


Asunto(s)
Fluorouracilo/química , beta-Ciclodextrinas/química , Antineoplásicos/química , Difusión , Sistemas de Liberación de Medicamentos/métodos , Espectroscopía de Resonancia Magnética/métodos , Solubilidad
4.
Chem Commun (Camb) ; 56(71): 10281-10284, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32734969

RESUMEN

The substrate promiscuity of an acyltransferase is leveraged to synthesize artificial lipoproteins bearing a non-canonical PTM (ncPTM). The non-canonical functionality of these lipoproteins results in a distinctive hysteretic assembly-absent from the canonical lipoproteins-and is used to prepare hybrid multiblock materials with precise and programmable patterns of amphiphilicity. This study demonstrates the promise of expanding the repertoire of PTMs for the development of nanomaterials with a unique assembly and function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA