Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 139: 337-347, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472462

RESUMEN

An increasing number of G protein-coupled receptors (GPCRs) have been reported to be expressed in the plasma membrane as dimers. Since most ligand binding data are currently fitted by classical equations developed only for monomeric receptors, the interpretation of data could be misleading in the presence of GPCR dimers. On the other hand, the equations developed from dimer receptor models assuming the existence of two orthosteric binding sites within the dimeric molecule offer the possibility to directly calculate macroscopic equilibrium dissociation constants for the two sites, an index of cooperativity (DC) that reflects the molecular communication within the dimer and, importantly, a constant of radioligand-competitor allosteric interaction (KDAB) in competitive assays. Here, we provide a practical way to fit competitive binding data that allows the interpretation of apparently anomalous results, such as competition curves that could be either bell-shaped, monophasic or biphasic depending on the assay conditions. The consideration of a radioligand-competitor allosteric interaction allows fitting these curve patterns both under simulation conditions and in real radioligand binding experiments, obtaining competitor affinity parameters closer to the actual values. Our approach is the first that, assuming the formation of receptor homodimers, is able to explain several experimental results previously considered erroneous due to their impossibility to be fitted. We also deduce the radioligand concentration responsible for the conversion of biphasic to monophasic or to bell-shaped curves in competitive radioligand binding assays. In conclusion, bell-shaped curves in competitive binding experiments constitute evidence for GPCR homodimerization.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Unión Competitiva , Encéfalo , Membrana Celular , Multimerización de Proteína , Ensayo de Unión Radioligante , Ovinos
2.
BMC Biol ; 16(1): 24, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29486745

RESUMEN

BACKGROUND: G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A1R or A2AR) can form A1R-A2AR heteromers (A1-A2AHet), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (ß-arrestin mediated) signaling. Adenosine has different affinities for A1R and A2AR, allowing the heteromeric receptor to detect its concentration by integrating the downstream Gi- and Gs-dependent signals. cAMP accumulation and ß-arrestin recruitment assays have shown that, within the complex, activation of A2AR impedes signaling via A1R. RESULTS: We examined the mechanism by which A1-A2AHet integrates Gi- and Gs-dependent signals. A1R blockade by A2AR in the A1-A2AHet is not observed in the absence of A2AR activation by agonists, in the absence of the C-terminal domain of A2AR, or in the presence of synthetic peptides that disrupt the heteromer interface of A1-A2AHet, indicating that signaling mediated by A1R and A2AR is controlled by both Gi and Gs proteins. CONCLUSIONS: We identified a new mechanism of signal transduction that implies a cross-communication between Gi and Gs proteins guided by the C-terminal tail of the A2AR. This mechanism provides the molecular basis for the operation of the A1-A2AHet as an adenosine concentration-sensing device that modulates the signals originating at both A1R and A2AR.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética
3.
J Neurosci ; 37(5): 1176-1186, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007761

RESUMEN

The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of µ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT: The µ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin-opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder.


Asunto(s)
Receptores de Galanina/metabolismo , Receptores Opioides mu/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Neuronas Dopaminérgicas/efectos de los fármacos , Galanina/farmacología , Células HEK293 , Humanos , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Oncogénica v-akt/fisiología , Fosforilación , Ratas , Receptor Cross-Talk , Receptor de Galanina Tipo 1/genética , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/genética , Receptor de Galanina Tipo 2/metabolismo , Receptores de Galanina/genética , Receptores Opioides mu/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Transfección
4.
Proc Natl Acad Sci U S A ; 112(27): E3609-18, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100888

RESUMEN

Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.


Asunto(s)
Cuerpo Estriado/metabolismo , Multimerización de Proteína , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Agonistas del Receptor de Adenosina A2/metabolismo , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Unión Competitiva/efectos de los fármacos , Transferencia de Energía por Resonancia de Bioluminiscencia , Células CHO , Cricetinae , Cricetulus , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Cinética , Masculino , Microscopía Confocal , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Receptor de Adenosina A2A/química , Receptores de Dopamina D2/química , Ovinos , Factores de Tiempo
5.
J Biol Chem ; 291(25): 13048-62, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129257

RESUMEN

The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling.


Asunto(s)
Neuronas/metabolismo , Receptores de Ghrelina/fisiología , Transducción de Señal , Adenilil Ciclasas/metabolismo , Animales , Membrana Celular/metabolismo , Ghrelina/fisiología , Células HEK293 , Hipocampo/citología , Humanos , Multimerización de Proteína , Subunidades de Proteína/fisiología , Transporte de Proteínas , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo
6.
BMC Biol ; 14: 26, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048449

RESUMEN

BACKGROUND: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. RESULTS: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. CONCLUSIONS: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Animales , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína
7.
J Neurosci ; 35(17): 6639-53, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25926444

RESUMEN

Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Receptores de Orexina/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Animales , Arrestinas/metabolismo , AMP Cíclico/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dopamina/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteína Oncogénica v-akt/metabolismo , Receptores de Orexina/genética , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Factores de Tiempo , Área Tegmental Ventral/citología , beta-Arrestinas
8.
J Neurosci ; 34(10): 3545-58, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599455

RESUMEN

The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits ß-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine.


Asunto(s)
Cocaína/antagonistas & inhibidores , Cocaína/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores Histamínicos H3/metabolismo , Receptores sigma/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Benzamidas/administración & dosificación , Benzazepinas/administración & dosificación , Benzazepinas/metabolismo , Línea Celular Tumoral , Cocaína/toxicidad , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores sigma/antagonistas & inhibidores , Transducción de Señal/fisiología , Receptor Sigma-1
9.
Med Res Rev ; 35(1): 85-125, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24933472

RESUMEN

Interest in adenosine deaminase (ADA) in the context of medicine has mainly focused on its enzymatic activity. This is justified by the importance of the reaction catalyzed by ADA not only for the intracellular purine metabolism, but also for the extracellular purine metabolism as well, because of its capacity as a regulator of the concentration of extracellular adenosine that is able to activate adenosine receptors (ARs). In recent years, other important roles have been described for ADA. One of these, with special relevance in immunology, is the capacity of ADA to act as a costimulator, promoting T-cell proliferation and differentiation mainly by interacting with the differentiation cluster CD26. Another role is the ability of ADA to act as an allosteric modulator of ARs. These receptors have very general physiological implications, particularly in the neurological system where they play an important role. Thus, ADA, being a single chain protein, performs more than one function, consistent with the definition of a moonlighting protein. Although ADA has never been associated with moonlighting proteins, here we consider ADA as an example of this family of multifunctional proteins. In this review, we discuss the different roles of ADA and their pathological implications. We propose a mechanism by which some of their moonlighting functions can be coordinated. We also suggest that drugs modulating ADA properties may act as modulators of the moonlighting functions of ADA, giving them additional potential medical interest.


Asunto(s)
Adenosina Desaminasa/efectos de los fármacos , Diseño de Fármacos , Animales , Humanos
10.
PLoS Biol ; 10(6): e1001347, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22723743

RESUMEN

The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α(1B)-D4 and ß1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/biosíntesis , Glándula Pineal/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores de Dopamina D4/metabolismo , Animales , Células CHO , Cricetinae , Dopamina/metabolismo , Células HEK293 , Humanos , Masculino , Ratas , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta 1/genética , Receptores de Dopamina D4/genética , Serotonina/biosíntesis , Transfección
11.
Mol Pharmacol ; 86(4): 417-29, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25097189

RESUMEN

The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of ß-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted ß-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists.


Asunto(s)
Sitio Alostérico , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D3/metabolismo , Adenilil Ciclasas/metabolismo , Regulación Alostérica , Arrestinas/metabolismo , Agonistas de Dopamina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Unión Proteica , Multimerización de Proteína , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/química , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/química , beta-Arrestina 1 , beta-Arrestinas
12.
FASEB J ; 27(3): 1048-61, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23193172

RESUMEN

The enzyme adenosine deaminase (ADA) is a multifunctional protein that can both degrade adenosine and bind extracellularly to adenosine receptors, acting as an allosteric modulator regulating the hormonal effects of adenosine. The molecular regions of ADA responsible for the latter are unknown. In this work, alanine scanning mutagenesis of various ADA amino acid stretches, selected through in silico docking experiments, allowed us to identify regions of the enzyme responsible for modulating both its catalytic activity and its ability to modulate agonist binding to A and A adenosine receptors (AR and AR). The combination of computational and in vitro experiments show that the structural gate to the catalytic site; i.e., the α-1 helix containing residues L58-I72 and the loop containing residues A184-I188 of ADA, were important to maintain both the catalytic efficiency of the enzyme and its action as an allosteric modulator of the adenosine receptors. These data are consistent with a predicted supramolecular assembly, in which ADA bridges AR and CD26 and are in line with the notion that the interaction of ADA with adenosine receptors has an important role in the immunosynapse. We propose that it is the ADA open form, but not the closed one, that is responsible for the functional interaction with A1R and A2AR.


Asunto(s)
Adenosina Desaminasa/química , Simulación del Acoplamiento Molecular , Receptor de Adenosina A1/química , Receptor de Adenosina A2A/química , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Regulación Alostérica/fisiología , Humanos , Mutagénesis Sitio-Dirigida , Mutación Missense , Unión Proteica , Estructura Secundaria de Proteína , Receptor de Adenosina A1/genética , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo
13.
J Biol Chem ; 287(25): 20851-65, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22532560

RESUMEN

Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.


Asunto(s)
Globo Pálido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Glándula Pineal/metabolismo , Multimerización de Proteína/fisiología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética
14.
Proc Natl Acad Sci U S A ; 107(43): 18676-81, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20956312

RESUMEN

It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Cocaína/toxicidad , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Receptores sigma/efectos de los fármacos , Receptores sigma/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Línea Celular , Trastornos Relacionados con Cocaína/etiología , Cricetinae , Cricetulus , Dimerización , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Estructura Cuaternaria de Proteína/efectos de los fármacos , Receptores de Dopamina D1/química , Receptores de Dopamina D1/genética , Receptores sigma/química , Receptores sigma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfección , Receptor Sigma-1
15.
J Biol Chem ; 286(7): 5846-54, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21173143

RESUMEN

Previously, using artificial cell systems, we identified receptor heteromers between the dopamine D(1) or D(2) receptors and the histamine H(3) receptor. In addition, we demonstrated two biochemical characteristics of the dopamine D(1) receptor-histamine H(3) receptor heteromer. We have now extended this work to show the dopamine D(1) receptor-histamine H(3) receptor heteromer exists in the brain and serves to provide a novel link between the MAPK pathway and the GABAergic neurons in the direct striatal efferent pathway. Using the biochemical characteristics identified previously, we found that the ability of H(3) receptor activation to stimulate p44 and p42 extracellular signal-regulated MAPK (ERK 1/2) phosphorylation was only observed in striatal slices of mice expressing D(1) receptors but not in D(1) receptor-deficient mice. On the other hand, the ability of both D(1) and H(3) receptor antagonists to block MAPK activation induced by either D(1) or H(3) receptor agonists was also found in striatal slices. Taken together, these data indicate the occurrence of D(1)-H(3) receptor complexes in the striatum and, more importantly, that H(3) receptor agonist-induced ERK 1/2 phosphorylation in striatal slices is mediated by D(1)-H(3) receptor heteromers. Moreover, H(3) receptor-mediated phospho-ERK 1/2 labeling co-distributed with D(1) receptor-containing but not with D(2) receptor-containing striatal neurons. These results indicate that D(1)-H(3) receptor heteromers work as processors integrating dopamine- and histamine-related signals involved in controlling the function of striatal neurons of the direct striatal pathway.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Histamina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores Histamínicos H3/metabolismo , Animales , Cuerpo Estriado/citología , Activación Enzimática/fisiología , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/citología , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores Histamínicos H3/genética
16.
Biochem J ; 435(3): 701-9, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21306300

RESUMEN

A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.


Asunto(s)
Adenosina Desaminasa/metabolismo , Receptor de Adenosina A2A/metabolismo , Transducción de Señal/fisiología , Agonistas del Receptor de Adenosina A2 , Antagonistas del Receptor de Adenosina A2 , Animales , Encéfalo , Células CHO , Cuerpo Estriado/metabolismo , Cricetinae , Cricetulus , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Unión Proteica , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Ovinos
17.
J Biol Chem ; 285(35): 27346-27359, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20562103

RESUMEN

G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A(2A), cannabinoid CB(1), and dopamine D(2) receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A(2A), CB(1), and D(2)) was found to include two evolutionarily conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB(1) receptor with A(2A) and D(2) receptors are fundamental for the correct formation of the quaternary structure needed for the function (MAPK signaling) of the A(2A)-CB(1)-D(2) receptor heteromers. Analysis of MAPK signaling in striatal slices of CB(1) receptor KO mice and wild-type littermates supported the existence of A(1)-CB(1)-D(2) receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultimer.


Asunto(s)
Epítopos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Línea Celular , Epítopos/química , Epítopos/genética , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Relación Estructura-Actividad
18.
Nat Methods ; 5(8): 727-33, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18587404

RESUMEN

Identification of higher-order oligomers in the plasma membrane is essential to decode the properties of molecular networks controlling intercellular communication. We combined bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) in a technique called sequential BRET-FRET (SRET) that permits identification of heteromers formed by three different proteins. In SRET, the oxidation of a Renilla luciferase (Rluc) substrate by an Rluc fusion protein triggers acceptor excitation of a second fusion protein by BRET and subsequent FRET to a third fusion protein. We describe two variations of SRET that use different Rluc substrates with appropriately paired acceptor fluorescent proteins. Using SRET, we identified complexes of cannabinoid CB(1), dopamine D(2) and adenosine A(2A) receptors in living cells. SRET is an invaluable technique to identify heteromeric complexes of more than two neurotransmitter receptors, which will allow us to better understand how signals are integrated at the molecular level.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Complejos Multiproteicos/análisis , Complejos Multiproteicos/química , Línea Celular , Supervivencia Celular , Humanos , Proteínas Luminiscentes/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/química
19.
J Biol Chem ; 284(41): 28058-28068, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19632986

RESUMEN

The Ca(2+)-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D(2) receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D(2) receptor, within an Arg-rich epitope that is also involved in the binding to G(i/o) proteins and to the adenosine A(2A) receptor, with the formation of A(2A)-D(2) receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A(2A) receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A(2A)-D(2) receptor oligomerization. BRET competition experiments indicated that, in the A(2A)-D(2) receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A(2A) receptor. Furthermore, Ca(2+) was found to induce conformational changes in the CaM-A(2A)-D(2) receptor oligomer and to selectively modulate A(2A) and D(2) receptor-mediated MAPK signaling in the A(2A)-D(2) receptor heteromer. These results may have implications for basal ganglia disorders, since A(2A)-D(2) receptor heteromers are being considered as a target for anti-parkinsonian agents.


Asunto(s)
Calmodulina/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Calmodulina/química , Calmodulina/genética , Línea Celular , Dopamina/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Datos de Secuencia Molecular , Complejos Multiproteicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
20.
J Neurochem ; 114(4): 972-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20477947

RESUMEN

Pharmacological characterization of adenosine A(1) and A(2A) receptors in human brain caudate nucleus membranes led to non-cooperative binding of radiolabelled ligands. In human caudate nucleus but not in cortex, the agonist binding to A(1) receptors was modulated by the agonist binding to A(2A) receptors indicating a functional negative cross-talk. Accordingly, the A(1) receptor-activation-mediated G(i)-dependent guanosine 5'-o-(3-[(35)S]thio-triphosphate) binding was modulated by agonist binding to A(2A) receptors. A(2A) receptors occupation led to a decrease in the potency of A(1) receptor agonists. These results indicate that A(1) but not A(2A) receptors activation, likely occurring at low adenosine concentrations, engages a G(i)-mediated signaling; however, when both receptors are occupied by adenosine, there is an A(2A) receptor-mediated impairment of G(i)-operated transducing units. These findings are relevant to get insight into the complex relationships derived from co-expression of multiple neurotransmitter/neuromodulator receptors subtypes that individually are coupled to different G proteins. A further finding was the demonstration that the A(2A) receptor agonist, CGS 21680, at high concentrations able to significantly bind to the A(1) receptor, behaved as a partial agonist of the later receptor. This fact might be taken into account when characterizing CGS 21680 actions in human cells expressing A(1) receptors when the compound is used at micromolar concentrations.


Asunto(s)
Núcleo Caudado/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Complejos Multiproteicos/metabolismo , Receptor Cross-Talk/fisiología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Agonistas del Receptor de Adenosina A1 , Agonistas del Receptor de Adenosina A2 , Unión Competitiva/fisiología , Núcleo Caudado/efectos de los fármacos , Membrana Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/agonistas , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Humanos , Complejos Multiproteicos/agonistas , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA