Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 136(5): 709-727, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30136084

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by tau pathology in neurons and glial cells. Transcriptional regulation has been implicated as a potential mechanism in conferring disease risk and neuropathology for some PSP genetic risk variants. However, the role of transcriptional changes as potential drivers of distinct cell-specific tau lesions has not been explored. In this study, we integrated brain gene expression measurements, quantitative neuropathology traits and genome-wide genotypes from 268 autopsy-confirmed PSP patients to identify transcriptional associations with unique cell-specific tau pathologies. We provide individual transcript and transcriptional network associations for quantitative oligodendroglial (coiled bodies = CB), neuronal (neurofibrillary tangles = NFT), astrocytic (tufted astrocytes = TA) tau pathology, and tau threads and genomic annotations of these findings. We identified divergent patterns of transcriptional associations for the distinct tau lesions, with the neuronal and astrocytic neuropathologies being the most different. We determined that NFT are positively associated with a brain co-expression network enriched for synaptic and PSP candidate risk genes, whereas TA are positively associated with a microglial gene-enriched immune network. In contrast, TA is negatively associated with synaptic and NFT with immune system transcripts. Our findings have implications for the diverse molecular mechanisms that underlie cell-specific vulnerability and disease risk in PSP.


Asunto(s)
Química Encefálica/genética , Expresión Génica/genética , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Tauopatías/genética , Tauopatías/patología , Anciano , Astrocitos/patología , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Sistema Inmunológico/patología , Inmunohistoquímica , Masculino , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Neuronas/patología , Proteoma , ARN/biosíntesis , ARN/genética , Sinapsis/patología
2.
Alzheimers Dement ; 14(3): 352-366, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29107053

RESUMEN

INTRODUCTION: Comparative transcriptome analyses in Alzheimer's disease (AD) and other neurodegenerative proteinopathies can uncover both shared and distinct disease pathways. METHODS: We analyzed 940 brain transcriptomes including patients with AD, progressive supranuclear palsy (PSP; a primary tauopathy), and control subjects. RESULTS: We identified transcriptional coexpression networks implicated in myelination, which were lower in PSP temporal cortex (TCX) compared with AD. Some of these associations were retained even after adjustments for brain cell population changes. These TCX myelination network structures were preserved in cerebellum but they were not differentially expressed in cerebellum between AD and PSP. Myelination networks were downregulated in both AD and PSP, when compared with control TCX samples. DISCUSSION: Downregulation of myelination networks may underlie both PSP and AD pathophysiology, but may be more pronounced in PSP. These data also highlight conservation of transcriptional networks across brain regions and the influence of cell type changes on these networks.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Transcriptoma , Enfermedad de Alzheimer/genética , Estudios de Cohortes , Biología Computacional , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Parálisis Supranuclear Progresiva/genética
3.
Alzheimers Dement ; 13(6): 663-673, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27939925

RESUMEN

INTRODUCTION: We hypothesized that common Alzheimer's disease (AD)-associated variants within the triggering receptor expressed on myeloid (TREM) gene cluster influence disease through gene expression. METHODS: Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis. RESULTS: A variant within a DNase hypersensitive site 5' of TREM2, rs9357347-C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.3 × 10-3 and 4.6 × 10-2, respectively). Meta-analysis on expression quantitative trait locus results from three independent data sets (n = 1006) confirmed these associations (uncorrected P = 3.4 × 10-2 and 3.5 × 10-3, Bonferroni-corrected P = 6.7 × 10-2 and 7.1 × 10-3, respectively). DISCUSSION: Our findings point to rs9357347 as a functional regulatory variant that contributes to a protective effect observed at the TREM locus in the International Genomics of Alzheimer's Project genome-wide association study meta-analysis and suggest concomitant increase in TREML1 and TREM2 brain levels as a potential mechanism for protection from AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Anciano , Anciano de 80 o más Años , Cerebelo/metabolismo , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Desequilibrio de Ligamiento , Masculino , Análisis por Micromatrices , Familia de Multigenes , Sitios de Carácter Cuantitativo , Lóbulo Temporal/metabolismo
4.
Acta Neuropathol ; 132(2): 197-211, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27115769

RESUMEN

To determine the effects of single nucleotide polymorphisms (SNPs) identified in a genome-wide association study of progressive supranuclear palsy (PSP), we tested their association with brain gene expression, CpG methylation and neuropathology. In 175 autopsied PSP subjects, we performed associations between seven PSP risk variants and temporal cortex levels of 20 genes in-cis, within ±100 kb. Methylation measures were collected using reduced representation bisulfite sequencing in 43 PSP brains. To determine whether SNP/expression associations are due to epigenetic modifications, CpG methylation levels of associated genes were tested against relevant variants. Quantitative neuropathology endophenotypes were tested for SNP associations in 422 PSP subjects. Brain levels of LRRC37A4 and ARL17B were associated with rs8070723; MOBP with rs1768208 and both ARL17A and ARL17B with rs242557. Expression associations for LRRC37A4 and MOBP were available in an additional 100 PSP subjects. Meta-analysis revealed highly significant associations for PSP risk alleles of rs8070723 and rs1768208 with higher LRRC37A4 and MOBP brain levels, respectively. Methylation levels of one CpG in the 3' region of ARL17B associated with rs242557 and rs8070723. Additionally, methylation levels of an intronic ARL17A CpG associated with rs242557 and that of an intronic MOBP CpG with rs1768208. MAPT and MOBP region risk alleles also associated with higher levels of neuropathology. Strongest associations were observed for rs242557/coiled bodies and tufted astrocytes; and for rs1768208/coiled bodies and tau threads. These findings suggest that PSP variants at MAPT and MOBP loci may confer PSP risk via influencing gene expression and tau neuropathology. MOBP, LRRC37A4, ARL17A and ARL17B warrant further assessment as candidate PSP risk genes. Our findings have implications for the mechanism of action of variants at some of the top PSP risk loci.


Asunto(s)
Alelos , Metilación de ADN , Expresión Génica/fisiología , Estudio de Asociación del Genoma Completo , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Expresión Génica/genética , Sitios Genéticos , Humanos , Masculino , Neuropatología/métodos , Polimorfismo de Nucleótido Simple/genética , Riesgo , Proteínas tau/genética , Proteínas tau/metabolismo
5.
PLoS Genet ; 8(6): e1002707, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685416

RESUMEN

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5)-1.67 × 10(-82)). Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5)-1.70 × 10(-141)). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6)). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6)) of significant cisSNPs with suggestive AD-risk association (p<10(-3)) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings have implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in the study of human disease genetics.


Asunto(s)
Enfermedad de Alzheimer/genética , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Lóbulo Temporal , Autopsia , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , ARN/genética , Lóbulo Temporal/metabolismo
6.
Alzheimers Dement ; 10(2): 205-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23643458

RESUMEN

BACKGROUND: Genetic variants at the CLU, CR1, and PICALM loci associate with risk for late-onset Alzheimer's disease (LOAD) in genomewide association studies. In this study, our aim was to determine whether the LOAD risk variants at these three loci influence memory endophenotypes in black and white subjects. METHODS: We pursued an association study between single nucleotide polymorphism genotypes at the CLU, CR1, and PICALM loci and memory endophenotypes. We assessed black subjects (AA series: 44 with LOAD and 224 control subjects) recruited at Mayo Clinic Florida and whites recruited at Mayo Clinic Minnesota (RS series: 372 with LOAD and 1690 control subjects) and Florida (JS series: 60 with LOAD and 529 control subjects). Single nucleotide polymorphisms at the LOAD risk loci CLU (rs11136000), CR1 (rs6656401, rs3818361), and PICALM (rs3851179) were genotyped and tested for association with Logical Memory immediate recall, Logical Memory delayed recall, Logical Memory percent retention, Visual Reproduction immediate recall, Visual Reproduction delayed recall, and Visual Reproduction percent retention scores from the Wechsler Memory Scale-Revised using multivariable linear regression analysis, adjusting for age at exam, sex, education, and apolipoprotein E ε4 dosage. RESULTS: We identified nominally significant or suggestive associations between the LOAD-risky CR1 variants and worse Logical Memory immediate recall scores in blacks (P = .068-.046, ß = -2.7 to -1.2). The LOAD-protective CLU variant is associated with better logical memory endophenotypes in white subjects (P = .099-.027, ß = 0.31-0.93). The CR1 associations persisted when the control subjects from the AA series were assessed separately. The CLU associations appeared to be driven by one of the white series (RS) and were also observed when the control subset from RS was analyzed. CONCLUSION: These results suggest for the first time that LOAD risk variants at CR1 may influence memory endophenotypes in blacks. In addition, the CLU LOAD-protective variant may confer enhanced memory in whites. Although these results would not remain significant after stringent corrections for multiple testing, they need to be considered in the context of the LOAD associations with which they have biological consistency. They also provide estimates for effect sizes on memory endophenotypes that could guide future studies. The detection of memory effects for these variants in clinically normal subjects, implies that these LOAD risk loci might modify memory prior to clinical diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Clusterina/genética , Predisposición Genética a la Enfermedad/genética , Memoria/fisiología , Proteínas de Ensamble de Clatrina Monoméricas/genética , Receptores de Complemento 3b/genética , Anciano , Anciano de 80 o más Años , Apolipoproteína E4/genética , Población Negra/genética , Endofenotipos , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Escalas de Valoración Psiquiátrica , Población Blanca/genética
7.
Mol Neurodegener ; 18(1): 2, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609403

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aß) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aß40, Aß42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS: Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS: We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS: Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Estudio de Asociación del Genoma Completo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/patología , Fenotipo , Apolipoproteínas E/metabolismo , Proteínas tau/metabolismo
8.
Neurol Genet ; 8(2): e655, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35047668

RESUMEN

BACKGROUND AND OBJECTIVES: Putative loss-of-function (pLOF) ABCA7 variants that increase Alzheimer disease (AD) risk were identified; however, deep phenotypic characterization of these variants in mutation carriers is limited. We aimed to obtain deep clinical phenotypes of ABCA7 pLOF mutation carriers from a large retrospectively reviewed series. METHODS: Genotypes were determined for 5,353 individuals evaluated at Mayo Clinic for 6 reported ABCA7 pLOF variants (p.E709fs, p.Trp1214X, p.L1403fs, c.4416+2T>G, p.E1679X, and c.5570+5G>C). Medical records of 100 mutation carriers were reviewed for demographics, clinical phenotypes, and diagnoses. Eleven mutation carriers had autopsy-based neuropathologic diagnoses. RESULTS: We confirmed that ABCA7 pLOF mutations confer AD risk in our series of 2,495 participants with AD and 2,858 cognitively unaffected participants. Clinical review of 100 mutation carriers demonstrated phenotypic variability of clinical presentations with both memory and nonmemory cognitive impairment and a subset presenting with motor symptoms. There was a wide range of age at onset of cognitive symptoms (ages 56-92 years, mean = 75.6). Ten of the 11 autopsied mutation carriers had AD neuropathology. ABCA7 pLOF mutation carriers had higher rates of depression (41.6%) and first-degree relatives with cognitive impairment (38.1%) compared with the general population. DISCUSSION: Our study provides a deep clinical review of phenotypic characteristics of mutation carriers for 6 ABCA7 pLOF mutations. Although memory impairment was the most common initial symptom, nonmemory cognitive and/or motor symptoms were present in a substantial number of mutation carriers, highlighting the heterogeneity of clinical features associated with these mutations. Likewise, although AD neuropathology is the most common, it is not the only autopsy-based diagnosis. Presence of earlier ages at onset, higher rates of depression, and first-degree relatives with cognitive impairment among mutation carriers suggest that these genetic variants may have more aggressive clinical features than AD in the general population. This deep phenotyping study of ABCA7 pLOF mutation carriers provides essential genotype-phenotype correlations for future precision medicine approaches in the clinical setting.

9.
EBioMedicine ; 78: 103929, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35307406

RESUMEN

BACKGROUND: African Americans (AA) remain underrepresented in Alzheimer's disease (AD) research, despite the prevalence of AD being double in AA compared to non-Hispanic whites. To address this disparity, our group has established the Florida Consortium for African American Alzheimer's Disease Studies (FCA3DS), focusing on the identification of genetic risk factors and novel plasma biomarkers. METHOD: Utilizing FCA3DS whole exome sequence (WES) and plasma RNA samples from AD cases (n=151) and cognitively unimpaired (CU) elderly controls (n=269), we have performed differential gene expression (DGE) and expression quantitative trait locus (eQTL) analyses on 50 transcripts measured with a custom nanoString® panel. We designed this panel to measure, in plasma, cell-free mRNA (cf-mRNA) levels of AD-relevant genes. FINDINGS: Association with higher plasma CLU in CU vs. AD remained significant after Bonferroni correction. Study-wide significant eQTL associations were observed with 105 WES variants in cis with 22 genes, including variants in genes previously associated with AD risk in AA such as ABCA7 and AKAP9. Results from this plasma eQTL analysis identified AD-risk variants in ABCA7 and AKAP9 that are significantly associated with lower and higher plasma mRNA levels of these genes, respectively. Receiver operating characteristic analysis of age, sex APOE-ε4 dosage, CLU, APP, CD14, ABCA7, AKAP9 and APOE mRNA levels, and ABCA7 and AKAP9 eQTLs, achieved 77% area under the curve to discriminate AD vs. CU, an 8% improvement over a model that only included age, sex and APOE-ε4 dosage. INTERPRETATION: Incorporating plasma mRNA levels could contribute to improved predictive value of AD biomarker panels. FUNDING: This work was supported by the National Institute on Aging [RF AG051504, U01 AG046139, R01 AG061796 to NET; P30 AG062677 to JAL and NGR]; Florida Health Ed and Ethel Moore Alzheimer's Disease grants [5AZ03 and 7AZ17 to NET; 7AZ07 to MMC; 8AZ08 to JAL].


Asunto(s)
Enfermedad de Alzheimer , Negro o Afroamericano , Transportadoras de Casetes de Unión a ATP/genética , Negro o Afroamericano/genética , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Biomarcadores/sangre , Humanos , ARN Mensajero/genética
10.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34813500

RESUMEN

Vast numbers of differentially expressed genes and perturbed networks have been identified in Alzheimer's disease (AD), however, neither disease nor brain region specificity of these transcriptome alterations has been explored. Using RNA-Seq data from 231 temporal cortex and 224 cerebellum samples from patients with AD and progressive supranuclear palsy (PSP), a tauopathy, we identified a striking correlation in the directionality and magnitude of gene expression changes between these 2 neurodegenerative proteinopathies. Further, the transcriptomic changes in AD and PSP brains ware highly conserved between the temporal and cerebellar cortices, indicating that highly similar transcriptional changes occur in pathologically affected and grossly less affected, albeit functionally connected, areas of the brain. Shared up- or downregulated genes in AD and PSP are enriched in biological pathways. Many of these genes also have concordant protein changes and evidence of epigenetic control. These conserved transcriptomic alterations of 2 distinct proteinopathies in brain regions with and without significant gross neuropathology have broad implications. AD and other neurodegenerative diseases are likely characterized by common disease or compensatory pathways with widespread perturbations in the whole brain. These findings can be leveraged to develop multifaceted therapies and biomarkers that address these common, complex, and ubiquitous molecular alterations in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Transcriptoma , Anciano , Femenino , Humanos , Masculino
11.
Aging Cell ; 21(5): e13606, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35388616

RESUMEN

Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Transcriptoma/genética
12.
J Alzheimers Dis ; 79(1): 323-334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252078

RESUMEN

BACKGROUND/OBJECTIVE: The aim of this study was to determine if plasma concentrations of 5 surrogate markers of Alzheimer's disease (AD) pathology and neuroinflammation are associated with disease status in African Americans. METHODS: We evaluated 321 African Americans (159 AD, 162 controls) from the Florida Consortium for African-American Alzheimer's Disease Studies (FCA3DS). Five plasma proteins reflecting AD neuropathology or inflammation (Aß42, tau, IL6, IL10, TNFα) were tested for associations with AD, age, sex, APOE and MAPT genotypes, and for pairwise correlations. RESULTS: Plasma tau levels were higher in AD when adjusted for biological and technical covariates. APOEɛ4 was associated with lower plasma Aß42 and tau levels. Older age was associated with higher plasma Aß42, tau, and TNFα. Females had lower IL10 levels. Inflammatory proteins had strong pairwise correlations amongst themselves and with Aß42. CONCLUSION: We identified effects of demographic and genetic variants on five potential plasma biomarkers in African Americans. Plasma inflammatory biomarkers and Aß42 may reflect correlated pathologies and elevated plasma tau may be a biomarker of AD in this population.


Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/sangre , Negro o Afroamericano , Interleucina-10/sangre , Interleucina-6/sangre , Fragmentos de Péptidos/sangre , Factor de Necrosis Tumoral alfa/sangre , Proteínas tau/sangre , Anciano , Anciano de 80 o más Años , Apolipoproteínas E/genética , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas tau/genética
13.
Acta Neuropathol Commun ; 9(1): 93, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020725

RESUMEN

Cerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer's disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = -3.70 [95% CI -0.49--0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Angiopatía Amiloide Cerebral/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Isoformas de Proteínas/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/patología , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad
14.
Mol Neurodegener ; 15(1): 38, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660529

RESUMEN

Large-scale brain bulk-RNAseq studies identified molecular pathways implicated in Alzheimer's disease (AD), however these findings can be confounded by cellular composition changes in bulk-tissue. To identify cell intrinsic gene expression alterations of individual cell types, we designed a bioinformatics pipeline and analyzed three AD and control bulk-RNAseq datasets of temporal and dorsolateral prefrontal cortex from 685 brain samples. We detected cell-proportion changes in AD brains that are robustly replicable across the three independently assessed cohorts. We applied three different algorithms including our in-house algorithm to identify cell intrinsic differentially expressed genes in individual cell types (CI-DEGs). We assessed the performance of all algorithms by comparison to single nucleus RNAseq data. We identified consensus CI-DEGs that are common to multiple brain regions. Despite significant overlap between consensus CI-DEGs and bulk-DEGs, many CI-DEGs were absent from bulk-DEGs. Consensus CI-DEGs and their enriched GO terms include genes and pathways previously implicated in AD or neurodegeneration, as well as novel ones. We demonstrated that the detection of CI-DEGs through computational deconvolution methods is promising and highlight remaining challenges. These findings provide novel insights into cell-intrinsic transcriptional changes of individual cell types in AD and may refine discovery and modeling of molecular targets that drive this complex disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Transcriptoma/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Humanos
16.
Acta Neuropathol Commun ; 8(1): 172, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33092647

RESUMEN

Missense variants ABI3_rs616338-T and PLCG2_rs72824905-G were previously associated with elevated or reduced risk of Alzheimer's disease (AD), respectively. Despite reports of associations with other neurodegenerative diseases, there are few studies of these variants in purely neuropathologically diagnosed cohorts. Further, the effect of these mutations on neurodegenerative disease pathologies is unknown. In this study, we tested the effects of ABI3_rs616338-T and PLCG2_rs72824905-G on disease risk in autopsy cohorts comprised of 973 patients diagnosed neuropathologically with Lewy body disease (LBD-NP) and 1040 with progressive supranuclear palsy (PSP), compared to 3351 controls. LBD-NP patients were further categorized as high, intermediate and low likelihood of clinical dementia with Lewy bodies (DLB-CL) based on DLB Consortium criteria. We also tested for association with both Braak neurofibrillary tau tangle (nTotal = 2008, nPSP = 1037, nLBD-NP = 971) and Thal phase amyloid plaque scores (nTotal = 1786, nPSP = 1018, nLBD-NP = 768). Additionally, 841 PSP patients had quantitative tau neuropathology measures that were assessed for genetic associations. There was no statistically significant association with disease risk for either LBD-NP or PSP in our study. LBD intermediate category disease risk was significantly associated with ABI3_rs616338-T (OR = 2.65, 95% CI 1.46-4.83, p = 0.001). PLCG2_rs72824905-G was associated with lower Braak stage (ß = - 0.822, 95% CI - 1.439 to - 0.204, p = 0.009). This effect was more pronounced in the PSP (ß = - 0.995, 95% CI - 1.773 to - 0.218, p = 0.012) than LBD-NP patients (ß = - 0.292, 95% CI - 1.283 to 0.698, p = 0.563). PLCG2_rs72824905-G also showed association with reduced quantitative tau pathology for each lesion type and overall tau burden in PSP (ß = - 0.638, 95% CI - 1.139 to - 0.136, p = 0.013). These findings support a role for PLCG2_rs72824905-G in suppressing tau neuropathology. ABI3_rs616338-T may influence disease risk specifically in the LBD-NP intermediate category comprised of patients with diffuse neocortical or limbic LB, concurrently with moderate or high AD neuropathology, respectively. Our study provides a potential mechanism of action for the missense PLCG2 variant and suggests a differential disease risk effect for ABI3 in a distinct LBD-NP neuropathologic category.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad por Cuerpos de Lewy/genética , Fosfolipasa C gamma/genética , Parálisis Supranuclear Progresiva/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Mutación Missense , Parálisis Supranuclear Progresiva/patología
17.
Mol Neurodegener ; 13(1): 53, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30326945

RESUMEN

BACKGROUND: Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer's disease (AD). METHODS: We tested the association of these variants with five neurodegenerative diseases in Caucasian case-control cohorts: 2742 AD, 231 progressive supranuclear palsy (PSP), 838 Parkinson's disease (PD), 306 dementia with Lewy bodies (DLB) and 150 multiple system atrophy (MSA) vs. 3351 controls; and in an African-American AD case-control cohort (181 AD, 331 controls). 1479 AD and 1491 controls were non-overlapping with a prior report. RESULTS: Using Fisher's exact test, there was significant association of both ABI3_rs616338-T (OR = 1.41, p = 0.044) and PLCG2_rs72824905-G (OR = 0.56, p = 0.008) with AD. These OR estimates were maintained in the non-overlapping replication AD-control analysis, albeit at reduced significance (ABI3_rs616338-T OR = 1.44, p = 0.12; PLCG2_rs72824905-G OR = 0.66, p = 0.19). None of the other cohorts showed significant associations that were concordant with those for AD, although the DLB cohort had suggestive findings (Fisher's test: ABI3_rs616338-T OR = 1.79, p = 0.097; PLCG2_rs72824905-G OR = 0.32, p = 0.124). PLCG2_rs72824905-G showed suggestive association with pathologically-confirmed MSA (OR = 2.39, p = 0.050) and PSP (OR = 1.97, p = 0.061), although in the opposite direction of that for AD. We assessed RNA sequencing data from 238 temporal cortex (TCX) and 224 cerebellum (CER) samples from AD, PSP and control patients and identified co-expression networks, enriched in microglial genes and immune response GO terms, and which harbor PLCG2 and/or ABI3. These networks had higher expression in AD, but not in PSP TCX, compared to controls. This expression association did not survive adjustment for brain cell type population changes. CONCLUSIONS: We validated the associations previously reported with ABI3_rs616338-T and PLCG2_rs72824905-G in a Caucasian AD case-control cohort, and observed a similar direction of effect in DLB. Conversely, PLCG2_rs72824905-G showed suggestive associations with PSP and MSA in the opposite direction. We identified microglial gene-enriched co-expression networks with significantly higher levels in AD TCX, but not in PSP, a primary tauopathy. This co-expression network association appears to be driven by microglial cell population changes in a brain region affected by AD pathology. Although these findings require replication in larger cohorts, they suggest distinct effects of the microglial genes, ABI3 and PLCG2 in neurodegenerative diseases that harbor significant vs. low/no amyloid ß pathology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Mutación Missense , Enfermedades Neurodegenerativas/genética , Fosfolipasa C gamma/genética , Negro o Afroamericano/genética , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Microglía/metabolismo , Factores de Riesgo , Población Blanca/genética
18.
Neurol Genet ; 3(1): e126, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28097223

RESUMEN

OBJECTIVE: To investigate and characterize putative "loss-of-function" (LOF) adenosine triphosphate-binding cassette, subfamily A member 7 (ABCA7) mutations reported to associate with Alzheimer disease (AD) risk. METHODS: We genotyped 6 previously reported ABCA7 putative LOF variants in 1,465 participants with AD, 381 participants with other neuropathologies (non-AD), and 1,043 controls and assessed the overall mutational burden for association with different diagnosis groups. We measured brain ABCA7 protein and messenger RNA (mRNA) levels using Western blot and quantitative PCR, respectively, in 11 carriers of the 3 most common variants, and sequenced all 47 ABCA7 exons in these participants to screen for other coding variants. RESULTS: At least one of the investigated variants was identified in 45 participants with late-onset Alzheimer disease, 12 participants with other neuropathologies, and 11 elderly controls. Association analysis revealed a significantly higher burden of these variants in participants with AD (p = 5.00E-04) and those with other neuropathologies (p = 8.60E-03) when compared with controls. Concurrent analysis of brain ABCA7 mRNA and protein revealed lower protein but not mRNA in p.L1403fs carriers, lower mRNA but not protein in p.E709fs carriers, and additional deleterious mutations in some c.5570+5G>C carriers. CONCLUSIONS: Our results suggest that LOF may not be a common mechanism for these ABCA7 variants and expand the list of neurologic diseases enriched for them.

19.
Sci Data ; 3: 160089, 2016 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727239

RESUMEN

Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Genoma Humano , Enfermedades Neurodegenerativas/genética , Transcriptoma , Estudio de Asociación del Genoma Completo , Humanos
20.
Neurol Genet ; 1(2): e15, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27066552

RESUMEN

OBJECTIVE: To investigate the top late-onset Alzheimer disease (LOAD) risk loci detected or confirmed by the International Genomics of Alzheimer's Project for association with brain gene expression levels to identify variants that influence Alzheimer disease (AD) risk through gene expression regulation. METHODS: Expression levels from the cerebellum (CER) and temporal cortex (TCX) were obtained using Illumina whole-genome cDNA-mediated annealing, selection, extension, and ligation assay (WG-DASL) for ∼400 autopsied patients (∼200 with AD and ∼200 with non-AD pathologies). We tested 12 significant LOAD genome-wide association study (GWAS) index single nucleotide polymorphisms (SNPs) for cis association with levels of 34 genes within ±100 kb. We also evaluated brain levels of 14 LOAD GWAS candidate genes for association with 1,899 cis-SNPs. Significant associations were validated in a subset of TCX samples using next-generation RNA sequencing (RNAseq). RESULTS: We identified strong associations of brain CR1, HLA-DRB1, and PILRB levels with LOAD GWAS index SNPs. We also detected other strong cis-SNPs for LOAD candidate genes MEF2C, ZCWPW1, and SLC24A4. MEF2C and SLC24A4, but not ZCWPW1 cis-SNPs, also associate with LOAD risk, independent of the index SNPs. The TCX expression associations could be validated with RNAseq for CR1, HLA-DRB1, ZCWPW1, and SLC24A4. CONCLUSIONS: Our results suggest that some LOAD GWAS variants mark brain regulatory loci, nominate genes under regulation by LOAD risk variants, and annotate these variants for their brain regulatory effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA