Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2316419121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38830089

RESUMEN

The extinction of the woolly rhinoceros (Coelodonta antiquitatis) at the onset of the Holocene remains an enigma, with conflicting evidence regarding its cause and spatiotemporal dynamics. This partly reflects challenges in determining demographic responses of late Quaternary megafauna to climatic and anthropogenic causal drivers with available genetic and paleontological techniques. Here, we show that elucidating mechanisms of ancient extinctions can benefit from a detailed understanding of fine-scale metapopulation dynamics, operating over many millennia. Using an abundant fossil record, ancient DNA, and high-resolution simulation models, we untangle the ecological mechanisms and causal drivers that are likely to have been integral in the decline and later extinction of the woolly rhinoceros. Our 52,000-y reconstruction of distribution-wide metapopulation dynamics supports a pathway to extinction that began long before the Holocene, when the combination of cooling temperatures and low but sustained hunting by humans trapped woolly rhinoceroses in suboptimal habitats along the southern edge of their range. Modeling indicates that this ecological trap intensified after the end of the last ice age, preventing colonization of newly formed suitable habitats, weakening stabilizing metapopulation processes, triggering the extinction of the woolly rhinoceros in the early Holocene. Our findings suggest that fragmentation and resultant metapopulation dynamics should be explicitly considered in explanations of late Quaternary megafauna extinctions, sending a clarion call to the fragility of the remaining large-bodied grazers restricted to disjunct fragments of poor-quality habitat due to anthropogenic environmental change.


Asunto(s)
Extinción Biológica , Fósiles , Perisodáctilos , Dinámica Poblacional , Animales , Ecosistema , ADN Antiguo/análisis , Paleontología
2.
PLoS Biol ; 20(5): e3001289, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580078

RESUMEN

The first animals appear during the late Ediacaran (572 to 541 Ma); an initial diversity increase was followed reduction in diversity, often interpreted as catastrophic mass extinction. We investigate Ediacaran ecosystem structure changes over this time period using the "Elements of Metacommunity Structure" framework to assess whether this diversity reduction in the Nama was likely caused by an external mass extinction, or internal metacommunity restructuring. The oldest metacommunity was characterised by taxa with wide environmental tolerances, and limited specialisation or intertaxa associations. Structuring increased in the second oldest metacommunity, with groups of taxa sharing synchronous responses to environmental gradients, aggregating into distinct communities. This pattern strengthened in the youngest metacommunity, with communities showing strong environmental segregation and depth structure. Thus, metacommunity structure increased in complexity, with increased specialisation and resulting in competitive exclusion, not a catastrophic environmental disaster, leading to diversity loss in the terminal Ediacaran. These results reveal that the complex eco-evolutionary dynamics associated with Cambrian diversification were established in the Ediacaran.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Extinción Biológica
3.
Proc Natl Acad Sci U S A ; 119(21): e2113936119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35580185

RESUMEN

The evolutionary history of African hunter-gatherers holds key insights into modern human diversity. Here, we combine ethnographic and genetic data on Central African hunter-gatherers (CAHG) to show that their current distribution and density are explained by ecology rather than by a displacement to marginal habitats due to recent farming expansions, as commonly assumed. We also estimate the range of hunter-gatherer presence across Central Africa over the past 120,000 years using paleoclimatic reconstructions, which were statistically validated by our newly compiled dataset of dated archaeological sites. Finally, we show that genomic estimates of divergence times between CAHG groups match our ecological estimates of periods favoring population splits, and that recoveries of connectivity would have facilitated subsequent gene flow. Our results reveal that CAHG stem from a deep history of partially connected populations. This form of sociality allowed the coexistence of relatively large effective population sizes and local differentiation, with important implications for the evolution of genetic and cultural diversity in Homo sapiens.


Asunto(s)
Antropología Cultural , Arqueología , Variación Genética , Densidad de Población , África , Agricultura , Diversidad Cultural , Humanos
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161258

RESUMEN

The gastric bacterium Helicobacter pylori shares a coevolutionary history with humans that predates the out-of-Africa diaspora, and the geographical specificities of H. pylori populations reflect multiple well-known human migrations. We extensively sampled H. pylori from 16 ethnically diverse human populations across Siberia to help resolve whether ancient northern Eurasian populations persisted at high latitudes through the last glacial maximum and the relationships between present-day Siberians and Native Americans. A total of 556 strains were cultivated and genotyped by multilocus sequence typing, and 54 representative draft genomes were sequenced. The genetic diversity across Eurasia and the Americas was structured into three populations: hpAsia2, hpEastAsia, and hpNorthAsia. hpNorthAsia is closely related to the subpopulation hspIndigenousAmericas from Native Americans. Siberian bacteria were structured into five other subpopulations, two of which evolved through a divergence from hpAsia2 and hpNorthAsia, while three originated though Holocene admixture. The presence of both anciently diverged and recently admixed strains across Siberia support both Pleistocene persistence and Holocene recolonization. We also show that hspIndigenousAmericas is endemic in human populations across northern Eurasia. The evolutionary history of hspIndigenousAmericas was reconstructed using approximate Bayesian computation, which showed that it colonized the New World in a single migration event associated with a severe demographic bottleneck followed by low levels of recent admixture across the Bering Strait.


Asunto(s)
Migración Animal/fisiología , Helicobacter pylori/fisiología , Américas , Evolución Biológica , Genoma Bacteriano , Geografía , Helicobacter pylori/clasificación , Helicobacter pylori/genética , Humanos , Modelos Biológicos , Tipificación de Secuencias Multilocus , Siberia
5.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34949638

RESUMEN

Migration allows animals to exploit spatially separated and seasonally available resources at a continental to global scale. However, responding to global climatic changes might prove challenging, especially for long-distance intercontinental migrants. During glacial periods, when conditions became too harsh for breeding in the north, avian migrants have been hypothesized to retract their distribution to reside within small refugial areas. Here, we present data showing that an Afro-Palearctic migrant continued seasonal migration, largely within Africa, during previous glacial-interglacial cycles with no obvious impact on population size. Using individual migratory track data to hindcast monthly bioclimatic habitat availability maps through the last 120,000 y, we show altered seasonal use of suitable areas through time. Independently derived effective population sizes indicate a growing population through the last 40,000 y. We conclude that the migratory lifestyle enabled adaptation to shifting climate conditions. This indicates that populations of resource-tracking, long-distance migratory species could expand successfully during warming periods in the past, which could also be the case under future climate scenarios.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Cambio Climático , Clima , Dinámica Poblacional , África , Algoritmos , Animales , Asia , Ecosistema , Europa (Continente) , Femenino , Cubierta de Hielo , Masculino , Modelos Biológicos
6.
Proc Natl Acad Sci U S A ; 117(34): 20662-20671, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32753383

RESUMEN

The endangered whale shark (Rhincodon typus) is the largest fish on Earth and a long-lived member of the ancient Elasmobranchii clade. To characterize the relationship between genome features and biological traits, we sequenced and assembled the genome of the whale shark and compared its genomic and physiological features to those of 83 animals and yeast. We examined the scaling relationships between body size, temperature, metabolic rates, and genomic features and found both general correlations across the animal kingdom and features specific to the whale shark genome. Among animals, increased lifespan is positively correlated to body size and metabolic rate. Several genomic traits also significantly correlated with body size, including intron and gene length. Our large-scale comparative genomic analysis uncovered general features of metazoan genome architecture: Guanine and cytosine (GC) content and codon adaptation index are negatively correlated, and neural connectivity genes are longer than average genes in most genomes. Focusing on the whale shark genome, we identified multiple features that significantly correlate with lifespan. Among these were very long gene length, due to introns being highly enriched in repetitive elements such as CR1-like long interspersed nuclear elements, and considerably longer neural genes of several types, including connectivity, activity, and neurodegeneration genes. The whale shark genome also has the second slowest evolutionary rate observed in vertebrates to date. Our comparative genomics approach uncovered multiple genetic features associated with body size, metabolic rate, and lifespan and showed that the whale shark is a promising model for studies of neural architecture and lifespan.


Asunto(s)
Adaptación Fisiológica/genética , Tamaño Corporal/fisiología , Tiburones/genética , Animales , Secuencia de Bases/genética , Tamaño Corporal/genética , Genoma/genética , Genómica/métodos , Longevidad/genética , Tiburones/metabolismo , Temperatura
7.
Ecol Lett ; 25(8): 1889-1904, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763605

RESUMEN

The relationships between avian brood parasites and their hosts are widely recognised as model systems for studying coevolution. However, while most brood parasites are known to parasitise multiple species of host and hosts are often subject to parasitism by multiple brood parasite species, the examination of multispecies interactions remains rare. Here, we compile data on all known brood parasite-host relationships and find that complex brood parasite-host systems, where multiple species of brood parasites and hosts coexist and interact, are globally commonplace. By examining patterns of past research, we outline the disparity between patterns of network complexity and past research emphases and discuss factors that may be associated with these patterns. Drawing on insights gained from other systems that have embraced a multispecies framework, we highlight the potential benefits of considering brood parasite-host interactions as ecological networks and brood parasitism as a model system for studying multispecies interactions. Overall, our results provide new insights into the diversity of these relationships, highlight the stark mismatch between past research efforts and global patterns of network complexity, and draw attention to the opportunities that more complex arrangements offer for examining how species interactions shape global patterns of biodiversity.


Asunto(s)
Aves , Comportamiento de Nidificación , Animales , Biodiversidad , Evolución Biológica
8.
Ecol Lett ; 25(1): 125-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738712

RESUMEN

Pathways to extinction start long before the death of the last individual. However, causes of early stage population declines and the susceptibility of small residual populations to extirpation are typically studied in isolation. Using validated process-explicit models, we disentangle the ecological mechanisms and threats that were integral in the initial decline and later extinction of the woolly mammoth. We show that reconciling ancient DNA data on woolly mammoth population decline with fossil evidence of location and timing of extinction requires process-explicit models with specific demographic and niche constraints, and a constrained synergy of climatic change and human impacts. Validated models needed humans to hasten climate-driven population declines by many millennia, and to allow woolly mammoths to persist in mainland Arctic refugia until the mid-Holocene. Our results show that the role of humans in the extinction dynamics of woolly mammoth began well before the Holocene, exerting lasting effects on the spatial pattern and timing of its range-wide extinction.


Asunto(s)
Mamuts , Animales , Efectos Antropogénicos , Clima , Extinción Biológica , Fósiles , Humanos , Mamuts/genética
9.
Am Nat ; 200(4): 584-597, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36150195

RESUMEN

AbstractThe level of detail on host communities needed to understand multihost parasite invasions is an unresolved issue in disease ecology. Coarse community metrics that ignore functional differences between hosts, such as host species richness, can be good predictors of invasion outcomes. Yet if host species vary in the extent to which they maintain and transmit infections, then explicitly accounting for those differences may be important. Through controlled mesocosm experiments and modeling, we show that interspecific differences between host species are important for community-wide infection dynamics of the multihost fungal parasite of amphibians (Batrachochytrium dendrobatidis [Bd]), but only up to a point. The most abundant host species in our system, fire salamander larvae (Salamandra salamandra), did not maintain or transmit infections. Rather, two less abundant "auxiliary" host species, Iberian tree frog (Hyla molleri) and spiny toad (Bufo spinosus) larvae, maintained and transmitted Bd. Frogs had the highest mean rates of Bd shedding, giving them the highest contributions to the basic reproduction number, R0. Toad contributions to R0 were substantial, however, and when examining community-level patterns of infection and transmission, the effects of frogs and toads were similar. Specifying more than just host species richness to distinguish salamanders from auxiliary host species was critical for predicting community-level Bd prevalence and transmission. Distinguishing frogs from toads, however, did not improve predictions. These findings demonstrate limitations to the importance of host species identities in multihost infection dynamics. Host species that exhibit different functional traits, such as susceptibility and infectiousness, may play similar epidemiological roles in the broader community.


Asunto(s)
Quitridiomicetos , Animales , Anuros , Batrachochytrium , Bufonidae/microbiología , Larva/microbiología , Urodelos
10.
Proc Natl Acad Sci U S A ; 116(46): 23209-23215, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659036

RESUMEN

One-sixth of the global terrestrial surface now falls within protected areas (PAs), making it essential to understand how far they mitigate the increasing pressures on nature which characterize the Anthropocene. In by far the largest analysis of this question to date and not restricted to forested PAs, we compiled data from 12,315 PAs across 152 countries to investigate their ability to reduce human pressure and how this varies with socioeconomic and management circumstances. While many PAs show positive outcomes, strikingly we find that compared with matched unprotected areas, PAs have on average not reduced a compound index of pressure change over the past 15 y. Moreover, in tropical regions average pressure change from cropland conversion has increased inside PAs even more than in matched unprotected areas. However, our results also confirm previous studies restricted to forest PAs, where pressures are increasing, but less than in counterfactual areas. Our results also show that countries with high national-level development scores have experienced lower rates of pressure increase over the past 15 y within their PAs compared with a matched outside area. Our results caution against the rapid establishment of new PAs without simultaneously addressing the conditions needed to enable their success.


Asunto(s)
Conservación de los Recursos Naturales , Humanos , Modelos Estadísticos
11.
BMC Bioinformatics ; 22(1): 115, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750296

RESUMEN

BACKGROUND: Today an unprecedented amount of genetic sequence data is stored in publicly available repositories. For decades now, mitochondrial DNA (mtDNA) has been the workhorse of genetic studies, and as a result, there is a large volume of mtDNA data available in these repositories for a wide range of species. Indeed, whilst whole genome sequencing is an exciting prospect for the future, for most non-model organisms' classical markers such as mtDNA remain widely used. By compiling existing data from multiple original studies, it is possible to build powerful new datasets capable of exploring many questions in ecology, evolution and conservation biology. One key question that these data can help inform is what happened in a species' demographic past. However, compiling data in this manner is not trivial, there are many complexities associated with data extraction, data quality and data handling. RESULTS: Here we present the mtDNAcombine package, a collection of tools developed to manage some of the major decisions associated with handling multi-study sequence data with a particular focus on preparing sequence data for Bayesian skyline plot demographic reconstructions. CONCLUSIONS: There is now more genetic information available than ever before and large meta-data sets offer great opportunities to explore new and exciting avenues of research. However, compiling multi-study datasets still remains a technically challenging prospect. The mtDNAcombine package provides a pipeline to streamline the process of downloading, curating, and analysing sequence data, guiding the process of compiling data sets from the online database GenBank.


Asunto(s)
ADN Mitocondrial , Bases de Datos de Ácidos Nucleicos , Teorema de Bayes , ADN Mitocondrial/genética , Análisis de Secuencia de ADN
12.
Proc Biol Sci ; 288(1962): 20211066, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34727712

RESUMEN

Climate change influences population demography by altering patterns of gene flow and reproductive isolation. Direct mutation rates offer the possibility for accurate dating on the within-species level but are currently only available for a handful of vertebrate species. Here, we use the first directly estimated mutation rate in birds to study the evolutionary history of pied flycatchers (Ficedula hypoleuca). Using a combination of demographic inference and species distribution modelling, we show that all major population splits in this forest-dependent system occurred during periods of increased climate instability and rapid global temperature change. We show that the divergent Spanish subspecies originated during the Eemian-Weichselian transition 115-104 thousand years ago (kya), and not during the last glacial maximum (26.5-19 kya), as previously suggested. The magnitude and rates of climate change during the glacial-interglacial transitions that preceded population splits in pied flycatchers were similar to, or exceeded, those predicted to occur in the course of the current, human-induced climate crisis. As such, our results provide a timely reminder of the strong impact that episodes of climate instability and rapid temperature changes can have on species' evolutionary trajectories, with important implications for the natural world in the Anthropocene.


Asunto(s)
Cambio Climático , Pájaros Cantores , Animales , Biodiversidad , Bosques , Humanos , Pájaros Cantores/genética , Temperatura
13.
Mol Ecol ; 30(16): 3993-4004, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34152661

RESUMEN

During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species Distribution Models (SDMs), which allow us to back-cast the range occupied by a species based on its climatic preferences. In this paper, we contrast these two approaches by applying them to a large data set of 102 Holarctic bird species, for which both mitochondrial DNA sequences and distribution maps are available, to reconstruct their dynamics since the Last Glacial Maximum (LGM). Most species experienced an increase in effective population size (Ne , as estimated by BSPs) as well as an increase in geographical range (as reconstructed by SDMs) since the LGM; however, we found no correlation between the magnitude of changes in Ne and range size. The only clear signal we could detect was a later and greater increase in Ne for wetland birds compared to species that live in other habitats, a probable consequence of a delayed and more extensive increase in the extent of this habitat type after the LGM. The lack of correlation between SDM and BSP reconstructions could not be reconciled even when range shifts were considered. We suggest that this pattern might be linked to changes in population densities, which can be independent of range changes, and caution that interpreting either SDMs or BSPs independently is problematic and potentially misleading.


Asunto(s)
Aves , ADN Mitocondrial , Animales , Teorema de Bayes , Aves/genética , ADN Mitocondrial/genética , Ecosistema , Variación Genética , Filogenia , Filogeografía , Densidad de Población
14.
Hum Genet ; 139(5): 557-568, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32076829

RESUMEN

We provide a Kazakh whole genome sequence (MJS) and analyses with the largest comparative Kazakh genomic data available to date. We found 102,240 novel SNVs and a high level of heterozygosity. ADMIXTURE analysis confirmed a significant proportion of variations in this individual coming from all continents except Africa and Oceania. A principal component analysis showed neighboring Kalmyk, Uzbek, and Kyrgyz populations to have the strongest resemblance to the MJS genome which reflects fairly recent Kazakh history. MJS's mitochondrial haplogroup, J1c2, probably represents an early European and Near Eastern influence to Central Asia. This was also supported by the heterozygous SNPs associated with European phenotypic features and strikingly similar Kazakh ancestral composition inferred by ADMIXTURE. Admixture (f3) analysis showed that MJS's genomic signature is best described as a cross between the Neolithic East Asian (Devil's Gate1) and the Bronze Age European (Halberstadt_LBA1) components rather than a contemporary admixture.


Asunto(s)
Etnicidad/genética , Genética de Población , Genoma Humano , Polimorfismo de Nucleótido Simple , Población Blanca/genética , China , ADN Mitocondrial , Femenino , Humanos , Kazajstán , Análisis de Componente Principal
15.
Mol Ecol ; 29(9): 1596-1610, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31840921

RESUMEN

Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographical distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the Late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single Late Pleistocene population. Both the geographical origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because Late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.


Asunto(s)
Evolución Biológica , ADN Antiguo , Genoma Mitocondrial , Lobos , Animales , ADN Mitocondrial/genética , Perros , Flujo Génico , Filogenia , Lobos/genética
16.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24522598

RESUMEN

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Asunto(s)
Genoma Humano/genética , Indígenas Norteamericanos/genética , Filogenia , Arqueología , Asia/etnología , Huesos , Entierro , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Emigración e Inmigración/historia , Europa (Continente)/etnología , Flujo Génico/genética , Haplotipos/genética , Historia Antigua , Humanos , Lactante , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Montana , Dinámica Poblacional , Datación Radiométrica
17.
Proc Natl Acad Sci U S A ; 114(46): 12213-12218, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087301

RESUMEN

Mobility is one of the most important processes shaping spatiotemporal patterns of variation in genetic, morphological, and cultural traits. However, current approaches for inferring past migration episodes in the fields of archaeology and population genetics lack either temporal resolution or formal quantification of the underlying mobility, are poorly suited to spatially and temporally sparsely sampled data, and permit only limited systematic comparison between different time periods or geographic regions. Here we present an estimator of past mobility that addresses these issues by explicitly linking trait differentiation in space and time. We demonstrate the efficacy of this estimator using spatiotemporally explicit simulations and apply it to a large set of ancient genomic data from Western Eurasia. We identify a sequence of changes in human mobility from the Late Pleistocene to the Iron Age. We find that mobility among European Holocene farmers was significantly higher than among European hunter-gatherers both pre- and postdating the Last Glacial Maximum. We also infer that this Holocene rise in mobility occurred in at least three distinct stages: the first centering on the well-known population expansion at the beginning of the Neolithic, and the second and third centering on the beginning of the Bronze Age and the late Iron Age, respectively. These findings suggest a strong link between technological change and human mobility in Holocene Western Eurasia and demonstrate the utility of this framework for exploring changes in mobility through space and time.


Asunto(s)
ADN Antiguo/análisis , ADN Mitocondrial/genética , Genética de Población , Migración Humana , Modelos Estadísticos , Arqueología , Europa (Continente) , Historia Antigua , Humanos , Análisis de Secuencia de ADN , Análisis Espacio-Temporal
18.
BMC Biol ; 17(1): 28, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30925871

RESUMEN

BACKGROUND: Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations. RESULTS: We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation). CONCLUSIONS: Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.


Asunto(s)
Evolución Molecular , Genoma/fisiología , Conducta Predatoria , Escifozoos/fisiología , Animales , Evolución Biológica , Filogenia , Escifozoos/genética
19.
Ecol Lett ; 22(2): 256-264, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30481409

RESUMEN

Mutualisms are important ecological interactions that underpin much of the world's biodiversity. Predation risk has been shown to regulate mutualism dynamics in species-specific case studies; however, we lack studies which investigate whether predation can also explain broader patterns of mutualism evolution. We report that fish-anemone mutualisms have evolved on at least 55 occasions across 16 fish families over the past 60 million years and that adult body size is associated with the ontogenetic stage of anemone mutualisms: larger-bodied species partner with anemones as juveniles, while smaller-bodied species partner with anemones throughout their lives. Field and laboratory studies show that predators target smaller prey, that smaller fishes associate more with anemones, and that these relationships confer protection to small fishes. Our results indicate that predation is likely driving the recurrent convergent evolution of fish-anemone mutualisms and suggest that similar ecological processes may have selected convergence in interspecies interactions in other animal clades.


Asunto(s)
Arrecifes de Coral , Conducta Predatoria , Simbiosis , Animales , Biodiversidad , Peces
20.
Headache ; 59(4): 632-634, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30957222

RESUMEN

This commentary discusses a recent publication by evolutionary biologists with strong implications for migraine experts. The Authors showed that a gene polymorphism associated with migraine gave our ancestors an evolutionary advantage when colonizing northern, and thus colder, territories. They then highlight that the prevalence of migraine may differ among countries because of climatic adaptation. These results may prove useful in planning both epidemiological and physiological studies in the field of migraine.


Asunto(s)
Evolución Biológica , Trastornos Migrañosos/epidemiología , Trastornos Migrañosos/genética , Clima , Geografía , Humanos , Polimorfismo de Nucleótido Simple , Canales Catiónicos TRPM/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA