Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916274

RESUMEN

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Ácido gamma-Aminobutírico/administración & dosificación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Islotes Pancreáticos/citología , Masculino , Ratones , Proteínas del Tejido Nervioso , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacología
2.
Cell ; 138(3): 449-62, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19665969

RESUMEN

We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.


Asunto(s)
Diferenciación Celular , Células Secretoras de Glucagón/citología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Factores de Transcripción Paired Box/metabolismo , Páncreas/citología , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucagón/deficiencia , Islotes Pancreáticos/citología , Ratones , Proteínas del Tejido Nervioso/metabolismo , Páncreas/crecimiento & desarrollo
3.
PLoS Genet ; 12(9): e1006274, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27611684

RESUMEN

Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Neurogénesis , Mucosa Olfatoria/metabolismo , Factores de Transcripción/genética , Animales , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Mucosa Olfatoria/citología , Mucosa Olfatoria/embriología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Factores de Transcripción/metabolismo
4.
PLoS Genet ; 10(8): e1004468, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25166858

RESUMEN

The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6-/-;Sp8+/-) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/ßcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/biosíntesis , Extremidades/crecimiento & desarrollo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Proteínas de Unión al ADN/genética , Ectodermo , Embrión de Mamíferos , Desarrollo Embrionario , Extremidades/embriología , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Transducción de Señal/genética , Factores de Transcripción/genética , Proteínas Wnt/biosíntesis , Proteínas Wnt/genética
5.
PLoS Genet ; 9(10): e1003934, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204325

RESUMEN

Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing ß-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into ß-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon(+) cells thereby generated being subsequently converted into ß-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated ß-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional ß-cell mass and thereby reverse diabetes following toxin-induced ß-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 1/genética , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/genética , Animales , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glucagón/genética , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/biosíntesis , Humanos , Células Secretoras de Insulina/citología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones Transgénicos , Factores de Transcripción Paired Box/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/biosíntesis
6.
Mol Hum Reprod ; 20(6): 538-49, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24501429

RESUMEN

The advent of human induced pluripotent stem cells (hiPSC) is revolutionizing many research fields including cell-replacement therapy, drug screening, physiopathology of specific diseases and more basic research such as embryonic development or diseases modeling. Despite the large number of reports on reprogramming methods, techniques in use remain globally inefficient. We present here a new optimized approach to improve this efficiency. After having tested different monocistronic vectors with poor results, we adopted a polycistronic cassette encoding Thomson's cocktail OCT4, NANOG, SOX2 and LIN28 (ONSL) separated by 2A peptides. This cassette was tested in various vector backbones, based on lentivirus or retrovirus under a LTR or EF1 alpha promoter. This allowed us to show that ONSL-carrier retrovectors reprogrammed adult fibroblast cells with a much higher efficiency (up to 0.6%) than any other tested. We then compared the reprogramming efficiencies of two different polycistronic genes, ONSL and OCT4, SOX2, KLF4 and cMYC (OSKM) placed in the same retrovector backbone. Interestingly, in this context ONSL gene reprograms more efficiently than OSKM but OSKM reprograms faster suggesting that the two cocktails may reprogram through distinct pathways. By equally mixing RV-LTR-ONSL and RV-LTR-OSKM, we indeed observed a remarkable synergy, yielding a reprogramming efficiency of >2%. We present here a drastic improvement of the reprogramming efficiency, which opens doors to the development of automated and high throughput strategies of hiPSC production. Furthermore, non-integrative reprogramming protocols (i.e. mRNA) may take advantage of this synergy to boost their efficiency.


Asunto(s)
Reprogramación Celular , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Lentivirus/genética , Retroviridae/genética , Adulto , Células Cultivadas , Dermis/citología , Dermis/metabolismo , Femenino , Fibroblastos/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen , Marcadores Genéticos , Vectores Genéticos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
7.
Semin Cell Dev Biol ; 21(8): 838-44, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20688184

RESUMEN

The pancreas is composed of two main compartments consisting of endocrine and exocrine tissues. The majority of the organ is exocrine and responsible for the synthesis of digestive enzymes and for their transport via an intricate ductal system into the duodenum. The endocrine tissue represents less than 2% of the organ and is organized into functional units called islets of Langerhans, comprising alpha-, beta-, delta-, epsilon- and PP-cells, producing the hormones glucagon, insulin, somatostatin, ghrelin and pancreatic polypeptide (PP), respectively. Insulin-producing beta-cells play a central role in the control of the glucose homeostasis. Accordingly, absolute or relative deficiency in beta-cells may ultimately lead to type 1 and/or type 2 diabetes, respectively. One major goal of diabetes research is therefore to understand the molecular mechanisms controlling the development of beta-cells during pancreas morphogenesis, but also those underlying the regeneration of adult injured pancreas, and assess their significance for future cell-based therapy. In this review, we will therefore present new insights into beta-cell development with focus on beta-cell regeneration.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Animales , Proliferación Celular , Humanos , Ratones , Páncreas/citología , Páncreas/embriología
8.
Transgenic Res ; 21(6): 1215-20, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22717987

RESUMEN

Pax4 belongs to the paired-box family of transcription factors. The analysis of loss- and gain-of-function mutant animals revealed that this factor plays a crucial role in the endocrine pancreas. Indeed, Pax4 is required for the genesis of insulin-producing beta-cells. Remarkably, the sole misexpression of Pax4 in glucagon-expressing cells is able to induce their regeneration, endow these with beta-cell features, and thereby counter chemically induced diabetes. However, the function of Pax4 in adult endocrine cells remains unclear. Herein, we report the generation of Pax4 conditional knockout mice that will allow the analysis of Pax4 function in mature beta-cells, as well as in the adult central nervous system.


Asunto(s)
Proteínas de Homeodominio/fisiología , Células Secretoras de Insulina/metabolismo , Integrasas/metabolismo , Factores de Transcripción Paired Box/fisiología , Hormonas Pancreáticas/metabolismo , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Células Secretoras de Insulina/citología , Ratones , Ratones Noqueados
9.
BMC Dev Biol ; 11: 52, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880149

RESUMEN

BACKGROUND: Nkx2.2 and Arx represent key transcription factors implicated in the specification of islet cell subtypes during pancreas development. Mice deficient for Arx do not develop any alpha-cells whereas beta- and delta-cells are found in considerably higher numbers. In Nkx2.2 mutant animals, alpha- and beta-cell development is severely impaired whereas a ghrelin-expressing cell population is found augmented.Notably, Arx transcription is clearly enhanced in Nkx2.2-deficient pancreata. Hence in order to precise the functional link between both factors we performed a comparative analysis of Nkx2.2/Arx single- and double-mutants but also of Pax6-deficient animals. RESULTS: We show that most of the ghrelin+ cells emerging in pancreata of Nkx2.2- and Pax6-deficient mice, express the alpha-cell specifier Arx, but also additional beta-cell related genes. In Nkx2.2-deficient mice, Arx directly co-localizes with iAPP, PC1/3 and Pdx1 suggesting an Nkx2.2-dependent control of Arx in committed beta-cells. The combined loss of Nkx2.2 and Arx likewise results in the formation of a hyperplastic ghrelin+ cell population at the expense of mature alpha- and beta-cells. Surprisingly, such Nkx2.2-/-Arx- ghrelin+ cells also express the somatostatin hormone. CONCLUSIONS: Our data indicate that Nkx2.2 acts by reinforcing the transcriptional networks initiated by Pax4 and Arx in early committed beta- and alpha-cell, respectively. Our analysis also suggests that one of the coupled functions of Nkx2.2 and Pax4 is to counteract Arx gene activity in early committed beta-cells.


Asunto(s)
Linaje de la Célula , Ghrelina/biosíntesis , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/biosíntesis , Células Secretoras de Insulina/metabolismo , Somatostatina/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Ghrelina/genética , Células Secretoras de Glucagón/citología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/biosíntesis , Factor de Transcripción PAX6 , Factores del Dominio POU/biosíntesis , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/deficiencia , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Somatostatina/genética , Transactivadores/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas de Pez Cebra
10.
J Cell Biol ; 172(1): 91-102, 2006 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-16380438

RESUMEN

The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.


Asunto(s)
Músculo Esquelético/citología , Proteína MioD/metabolismo , Factor de Transcripción PAX7/fisiología , Factores de Transcripción Paired Box/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Apoptosis , Ciclo Celular , Diferenciación Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Mutación , Factor de Transcripción PAX3 , Factor de Transcripción PAX7/genética , Factores de Transcripción Paired Box/genética , Células Satélite del Músculo Esquelético/citología
11.
Nature ; 435(7044): 948-53, 2005 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-15843801

RESUMEN

During vertebrate development, successive phases of embryonic and fetal myogenesis lead to the formation and growth of skeletal muscles. Although the origin and molecular regulation of the earliest embryonic muscle cells is well understood, less is known about later stages of myogenesis. We have identified a new cell population that expresses the transcription factors Pax3 and Pax7 (paired box proteins 3 and 7) but no skeletal-muscle-specific markers. These cells are maintained as a proliferating population in embryonic and fetal muscles of the trunk and limbs throughout development. Using a stable green fluorescent protein (GFP) reporter targeted to Pax3, we demonstrate that they constitute resident muscle progenitor cells that subsequently become myogenic and form skeletal muscle. Late in fetal development, these cells adopt a satellite cell position characteristic of progenitor cells in postnatal muscle. In the absence of both Pax3 and Pax7, further muscle development is arrested and only the early embryonic muscle of the myotome forms. Cells failing to express Pax3 or Pax7 die or assume a non-myogenic fate. We conclude that this resident Pax3/Pax7-dependent progenitor cell population constitutes a source of myogenic cells of prime importance for skeletal muscle formation, a finding also of potential value in the context of cell therapy for muscle disease.


Asunto(s)
Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/embriología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Proteínas de Unión al ADN/genética , Eliminación de Gen , Proteínas de Homeodominio/genética , Ratones , Músculo Esquelético/metabolismo , Factor de Transcripción PAX3 , Factor de Transcripción PAX7 , Factores de Transcripción Paired Box , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Somitos/citología , Somitos/metabolismo , Células Madre/citología , Factores de Transcripción/genética
12.
Dev Biol ; 334(1): 59-71, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19627984

RESUMEN

The homeobox-containing gene Arx is expressed during ventral telencephalon development and required for correct GABAergic interneuron tangential migration from the ganglionic eminences to the olfactory bulbs, cerebral cortex and striatum. Its human ortholog is associated with a variety of neurological clinical manifestations whose symptoms are compatible with the loss of cortical interneurons and altered basal ganglia-related activities. Herein, we report the identification of a number of genes whose expression is consistently altered in Arx mutant ganglionic eminences. Our analyses revealed a striking ectopic expression in the ganglionic eminences of several of these genes normally at most marginally expressed in the ventral telencephalon. Among them, Ebf3 was functionally analyzed. Thus, its ectopic expression in ventral telencephalon was found to prevent neuronal tangential migration. Further, we showed that Arx is sufficient to repress Ebf3 endogenous expression and that its silencing in Arx mutant tissues partially rescues tangential cell movement. Together, these data provide new insights into the molecular pathways regulated by Arx during telencephalon development.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Telencéfalo/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Animales , Ganglios Basales/metabolismo , Movimiento Celular , Regulación hacia Abajo , Embrión de Mamíferos/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
13.
J Clin Invest ; 117(4): 961-70, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404619

RESUMEN

Aristaless-related homeobox (Arx) was recently demonstrated to be involved in pancreatic alpha cell fate specification while simultaneously repressing the beta and delta cell lineages. To establish whether Arx is not only necessary, but also sufficient to instruct the alpha cell fate in endocrine progenitors, we used a gain-of-function approach to generate mice conditionally misexpressing this factor. Mice with forced Arx expression in the embryonic pancreas or in developing islet cells developed a dramatic hyperglycemia and eventually died. Further analysis demonstrated a drastic loss of beta and delta cells. Concurrently, a remarkable increase in the number of cells displaying alpha cell or, strikingly, pancreatic polypeptide (PP) cell features was observed. Notably, the ectopic expression of Arx induced in embryonic or adult beta cells led to a loss of the beta cell phenotype and a concomitant increase in a number of cells with alpha or PP cell characteristics. Combining quantitative real-time PCR and lineage-tracing experiments, we demonstrate that, in adult mice, the misexpression of Arx, rather than its overexpression, promotes a conversion of beta cells into glucagon- or PP-producing cells in vivo. These results provide important insights into the complex mechanisms underlying proper pancreatic endocrine cell allocation and cell identity acquisition.


Asunto(s)
Proteínas de Homeodominio/genética , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/embriología , Polipéptido Pancreático/metabolismo , Factores de Transcripción/genética , Animales , Regulación de la Expresión Génica , Glucagón/metabolismo , Islotes Pancreáticos/crecimiento & desarrollo , Ratones , Fenotipo , Reacción en Cadena de la Polimerasa
14.
J Neurosci ; 28(42): 10674-86, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18923043

RESUMEN

The Arx transcription factor is expressed in the developing ventral telencephalon and subsets of its derivatives. Mutation of human ARX ortholog causes neurological disorders including epilepsy, lissencephaly, and mental retardation. We have isolated the mouse Arx endogenous enhancer modules that control its tightly compartmentalized forebrain expression. Interestingly, they are scattered downstream of its coding region and partially included within the introns of the downstream PolA1 gene. These enhancers are ultraconserved noncoding sequences that are highly conserved throughout the vertebrate phylum. Functional characterization of the Arx GABAergic enhancer element revealed its strict dependence on the activity of Dlx transcription factors. Dlx overexpression induces ectopic expression of endogenous Arx and its isolated enhancer, whereas loss of Dlx expression results in reduced Arx expression, suggesting that Arx is a key mediator of Dlx function. To further elucidate the mechanisms involved, a combination of gain-of-function studies in mutant Arx or Dlx tissues was pursued. This analysis provided evidence that, although Arx is necessary for the Dlx-dependent promotion of interneuron migration, it is not required for the GABAergic cell fate commitment mediated by Dlx factors. Although Arx has additional functions independent of the Dlx pathway, we have established a direct genetic relationship that controls critical steps in the development of telencephalic GABAergic neurons. These findings contribute elucidating the genetic hierarchy that likely underlies the etiology of a variety of human neurodevelopmental disorders.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Secuencia de Bases , Células Cultivadas , Marcación de Gen/métodos , Hipocampo/citología , Hipocampo/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
15.
J Neurosci ; 27(17): 4786-98, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17460091

RESUMEN

ARX loss-of-function mutations cause X-linked lissencephaly with ambiguous genitalia (XLAG), a severe neurological condition that results in profound brain malformations, including microcephaly, absence of corpus callosum, and impairment of the basal ganglia. Despite such dramatic defects, their nature and origin remain largely unknown. Here, we used Arx mutant mice as a model to characterize the cellular and molecular mechanisms underlying the basal ganglia alterations. In these animals, the early differentiation of this tissue appeared normal, whereas subsequent differentiation was impaired, leading to the periventricular accumulation of immature neurons in both the lateral ganglionic eminence and medial ganglionic eminence (MGE). Both tangential migration toward the cortex and striatum and radial migration to the globus pallidus and striatum were greatly reduced in the mutants, causing a periventricular accumulation of NPY+ or calretinin+ neurons in the MGE. Arx mutant neurons retained their differentiation potential in vitro but exhibited deficits in morphology and migration ability. These findings imply that cell-autonomous defects in migration underlie the neuronal localization defects. Furthermore, Arx mutants lacked a large fraction of cholinergic neurons and displayed a strong impairment of thalamocortical projections, in which major axon fiber tracts failed to traverse the basal ganglia. Altogether, these results highlight the critical functions of Arx in promoting neural migration and regulating basal ganglia differentiation in mice, consistent with the phenotype of XLAG patients.


Asunto(s)
Ganglios Basales/anomalías , Ganglios Basales/patología , Genitales/anomalías , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Corteza Cerebral/anomalías , Corteza Cerebral/patología , Proteína Doblecortina , Femenino , Globo Pálido/anomalías , Globo Pálido/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Técnicas de Cultivo de Órganos , Embarazo , Núcleos Septales/anomalías , Núcleos Septales/patología , Sustancia Negra/anomalías , Sustancia Negra/patología , Tálamo/anomalías , Tálamo/patología , Cromosoma X
16.
BMC Dev Biol ; 8: 62, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18513381

RESUMEN

BACKGROUND: Pax7 encodes a transcription factor well-established as an important determinant of mesencephalic identity and superior collicular development. Pax7 mutant mice, however, present with no obvious morphological impairments to the superior colliculus. This finding is paradoxical and has been attributed to functional redundancy afforded by its paralogue Pax3. Here we utilise Pax7 mutant mice to investigate the precise role of this important developmental regulator during superior collicular development and neuronal specification/differentiation. We also assess its spatiotemporal relationship with Pax3 during embryonic development. RESULTS: Analysis of the superior colliculus of Pax7 mutant and wildtype mice at a variety of developmental timepoints revealed that whilst correct initial specification is maintained, a subpopulation of dorsal mesencephalic neurons is lost at early postnatal stages. Moreover, a comparative analysis of embryonic Pax3 and Pax7 expression profiles indicate that Pax3 expression overlaps extensively with that of Pax7 initially, but their expression domains increasingly diverge as development progresses, coinciding spatiotemporally with neuronal differentiation and maturation of the tissue. Furthermore, Pax3 expression is perturbed within the CNS of embryonic Pax7 mutant mice. CONCLUSION: In summary, these results demonstrate that during superior collicular development, Pax7 is required to maintain a subpopulation of dorsal, mesencephalic neurons and partially regulates, spatiotemporally, Pax3 expression within the CNS. The differential nature of Pax7 and Pax3 with respect to neuronal differentiation may have implications for future stem cell therapies aimed at exploiting their developmental capabilities.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Factor de Transcripción PAX7/biosíntesis , Factores de Transcripción Paired Box/biosíntesis , Colículos Superiores/embriología , Animales , Apoptosis , Proliferación Celular , Transdiferenciación Celular , Embrión de Mamíferos , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Ratones Mutantes , Neuronas/metabolismo , Factor de Transcripción PAX3 , Colículos Superiores/citología , Colículos Superiores/metabolismo
17.
PLoS One ; 13(8): e0201536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30092080

RESUMEN

In the context of type 1 diabetes research and the development of insulin-producing ß-cell replacement strategies, whether pancreatic ductal cells retain their developmental capability to adopt an endocrine cell identity remains debated, most likely due to the diversity of models employed to induce pancreatic regeneration. In this work, rather than injuring the pancreas, we developed a mouse model allowing the inducible misexpression of the proendocrine gene Neurog3 in ductal cells in vivo. These animals developed a progressive islet hypertrophy attributed to a proportional increase in all endocrine cell populations. Lineage tracing experiments indicated a continuous neo-generation of endocrine cells exhibiting a ductal ontogeny. Interestingly, the resulting supplementary ß-like cells were found to be functional. Based on these findings, we suggest that ductal cells could represent a renewable source of new ß-like cells and that strategies aiming at controlling the expression of Neurog3, or of its molecular targets/co-factors, may pave new avenues for the improved treatments of diabetes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plasticidad de la Célula/fisiología , Diabetes Mellitus Tipo 1/patología , Células Endocrinas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Conductos Pancreáticos/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diabetes Mellitus Tipo 1/genética , Modelos Animales de Enfermedad , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Conductos Pancreáticos/citología , Regeneración
18.
Mech Dev ; 123(7): 501-12, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16822656

RESUMEN

Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Páncreas/citología , Páncreas/embriología , Animales , Humanos
19.
Front Immunol ; 8: 870, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28890717

RESUMEN

Natural killer (NK) cells play an important role as cytotoxic effector cells, which scan the organism for infected or tumorigenic cells. Conflicting data have been published whether NK cells can also kill allogeneic or even autologous pluripotent stem cells (PSCs) and which receptors are involved. A clarification of this question is relevant since an activity of NK cells against PSCs could reduce the risk of teratoma growth after transplantation of PSC-derived grafts. Therefore, the hypothesis has been tested that the activity of NK cells against PSCs depends on cytokine activation and specifically on the activating NK receptor NKG2D. It is shown that a subcutaneous injection of autologous iPSCs failed to activate NK cells against these iPSCs and can give rise to teratomas. In agreement with this result, several PSC lines, including two iPSC, two embryonic stem cell (ESC), and two so-called multipotent adult germline stem cell (maGSC) lines, were largely resistant against resting NK cells although differences in killing were found at low level. All PSC lines were killed by interleukin (IL)-2-activated NK cells, and maGSCs were better killed than the other PSC types. The PSCs expressed ligands of the activating NK receptor NKG2D and NKG2D-deficient NK cells from Klrk1-/- mice were impaired in their cytotoxic activity against PSCs. The low-cytotoxic activity of resting NK cells was almost completely dependent on NKG2D. The cytotoxic activity of IL-2-activated NKG2D-deficient NK cells against PSCs was reduced, indicating that also other activating receptors on cytokine-activated NK cells must be engaged by ligands on PSCs. Thus, NKG2D is an important activating receptor involved in killing of murine PSCs. However, NK cells need to be activated by cytokines before they efficiently target PSCs and then also other NK receptors become relevant. These features of NK cells might be relevant for transplantation of PSC-derived grafts since NK cells have the capability to kill undifferentiated cells, which might be present in grafts in trace amounts.

20.
Commun Integr Biol ; 10(3): e1300215, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28702122

RESUMEN

Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA