RESUMEN
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Magnesio , Mitomicina , Mitomicina/farmacología , Mitomicina/química , Magnesio/química , Magnesio/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Modelos Moleculares , Dominio Catalítico , Reparación del ADN , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Cristalografía por Rayos X , ADN/metabolismo , ADN/química , Exonucleasas/metabolismo , Exonucleasas/químicaRESUMEN
Lecithin:cholesterol acyltransferase (LCAT) deficiencies represent severe disorders characterized by aberrant cholesterol esterification in plasma, leading to life-threatening conditions. This study investigates the efficacy of Compound 2, a piperidinyl pyrazolopyridine allosteric activator that binds the membrane-binding domain of LCAT, in rescuing the activity of LCAT variants associated with disease. The variants K218N, N228K, and G230R, all located in the cap and lid domains of LCAT, demonstrated notable activity restoration in response to Compound 2. Molecular dynamics simulations and structural modeling indicate that these mutations disrupt the lid and membrane binding domain, with Compound 2 potentially dampening these structural alterations. Conversely, variants such as M252K and F382V in the cap and α/ß-hydrolase domain, respectively, exhibited limited or no rescue by Compound 2. Future research should prioritize in vivo investigations that would validate the therapeutic potential of Compound 2 and related activators in familial LCAT deficiency patients with mutations in the cap and lid of the enzyme. SIGNIFICANCE STATEMENT: Lecithin:cholesterol acyltranferase (LCAT) catalyzes the first step of reverse cholesterol transport, namely the esterification of cholesterol in high density lipoprotein particles. Somatic mutations in LCAT lead to excess cholesterol in blood plasma and, in severe cases, kidney failure. In this study, we show that recently discovered small molecule activators can rescue function in LCAT-deficient variants when the mutations occur in the lid and cap domains of the enzyme.
Asunto(s)
Deficiencia de la Lecitina Colesterol Aciltransferasa , Simulación de Dinámica Molecular , Mutación , Fosfatidilcolina-Esterol O-Aciltransferasa , Humanos , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Regulación Alostérica , Deficiencia de la Lecitina Colesterol Aciltransferasa/genética , Deficiencia de la Lecitina Colesterol Aciltransferasa/tratamiento farmacológico , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Piridinas/farmacologíaRESUMEN
LCAT converts free cholesterol to cholesteryl esters in the process of reverse cholesterol transport. Familial LCAT deficiency (FLD) is a genetic disease that was first described by Kaare R. Norum and Egil Gjone in 1967. This report is a summary from a 2017 symposium where Dr. Norum recounted the history of FLD and leading experts on LCAT shared their results. The Tesmer laboratory shared structural findings on LCAT and the close homolog, lysosomal phospholipase A2. Results from studies of FLD patients in Finland, Brazil, Norway, and Italy were presented, as well as the status of a patient registry. Drs. Kuivenhoven and Calabresi presented data from carriers of genetic mutations suggesting that FLD does not necessarily accelerate atherosclerosis. Dr. Ng shared that LCAT-null mice were protected from diet-induced obesity, insulin resistance, and nonalcoholic fatty liver disease. Dr. Zhou presented multiple innovations for increasing LCAT activity for therapeutic purposes, whereas Dr. Remaley showed results from treatment of an FLD patient with recombinant human LCAT (rhLCAT). Dr. Karathanasis showed that rhLCAT infusion in mice stimulates cholesterol efflux and suggested that it could also enhance cholesterol efflux from macrophages. While the role of LCAT in atherosclerosis remains elusive, the consensus is that a continued study of both the enzyme and disease will lead toward better treatments for patients with heart disease and FLD.
Asunto(s)
Investigación Biomédica , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Animales , HumanosRESUMEN
Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a 'Helicase and RNase D C-terminal' (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, 'slow' and 'normal', as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third 'fast' unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.
Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , RecQ Helicasas/fisiología , Eliminación de Gen , Secuencias Invertidas Repetidas , Cinética , Modelos Moleculares , Pinzas Ópticas , Conformación Proteica , Dominios Proteicos , RecQ Helicasas/genética , Imagen Individual de MoléculaRESUMEN
Lysosomal phospholipase A2 (LPLA2) is characterized by broad substrate recognition, peak activity at acidic pH, and the transacylation of lipophilic alcohols, especially N-acetyl-sphingosine. Prior structural analysis of LPLA2 revealed the presence of an atypical acidic residue, Asp13, in the otherwise hydrophobic active site cleft. We hypothesized that Asp13 contributed to the pH profile and/or substrate preference of LPLA2 for unsaturated acyl chains. To test this hypothesis, we substituted Asp13 for alanine, cysteine, or phenylalanine; then, we monitored the formation of 1-O-acyl-N-acetylsphingosine to measure the hydrolysis of sn-1 versus sn-2 acyl groups on a variety of glycerophospholipids. Substitutions with Asp13 yielded significant enzyme activity at neutral pH (7.4) and perturbed the selectivity for mono- and double-unsaturated acyl chains. However, this position played no apparent role in selecting for either the acyl acceptor or the head group of the glycerophospholipid. Our modeling indicates that Asp13 and its substitutions contribute to the pH activity profile of LPLA2 and to acyl chain selectivity by forming part of a hydrophobic track occupied by the scissile acyl chain.
Asunto(s)
Lisosomas/enzimología , Fosfolipasas A2/metabolismo , Acilación , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Modelos Moleculares , Mutación , Fosfolipasas A2/química , Fosfolipasas A2/genética , Estructura Terciaria de Proteína , Especificidad por SustratoRESUMEN
Lecithin:cholesterol acyltransferase (LCAT) plays a key role in reverse cholesterol transport by transferring an acyl group from phosphatidylcholine to cholesterol, promoting the maturation of high-density lipoproteins (HDL) from discoidal to spherical particles. LCAT is activated through an unknown mechanism by apolipoprotein A-I (apoA-I) and other mimetic peptides that form a belt around HDL. Here, we report the crystal structure of LCAT with an extended lid that blocks access to the active site, consistent with an inactive conformation. Residues Thr-123 and Phe-382 in the catalytic domain form a latch-like interaction with hydrophobic residues in the lid. Because these residues are mutated in genetic disease, lid displacement was hypothesized to be an important feature of apoA-I activation. Functional studies of site-directed mutants revealed that loss of latch interactions or the entire lid enhanced activity against soluble ester substrates, and hydrogen-deuterium exchange (HDX) mass spectrometry revealed that the LCAT lid is extremely dynamic in solution. Upon addition of a covalent inhibitor that mimics one of the reaction intermediates, there is an overall decrease in HDX in the lid and adjacent regions of the protein, consistent with ordering. These data suggest a model wherein the active site of LCAT is shielded from soluble substrates by a dynamic lid until it interacts with HDL to allow transesterification to proceed.
Asunto(s)
Apolipoproteína A-I/fisiología , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Dominio Catalítico , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Activación Enzimática , Humanos , Lipoproteínas HDL/metabolismo , Mutagénesis Sitio-Dirigida , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Conformación ProteicaRESUMEN
Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play a key role in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structure, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a cDNA hairpin. It is not clear how NC specifically destabilizes TAR RNA but does not strongly destabilize the resulting annealed RNA-DNA hybrid structure, which must be formed for reverse transcription to continue. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium TAR stability and unfolding barrier for TAR RNA. Experiments show that adding NC lowers the transition state barrier height while also dramatically shifting the barrier location. Incorporating TAR destabilization by NC into the mfold-based model reveals that a subset of preferential protein binding sites is responsible for the observed changes in the unfolding landscape, including the unusual shift in the transition state. We measure the destabilization induced at these NC binding sites and find that NC preferentially targets TAR RNA by binding to specific sequence contexts that are not present on the final annealed RNA-DNA hybrid structure. Thus, specific binding alters the entire RNA unfolding landscape, resulting in the dramatic destabilization of this specific structure that is required for reverse transcription.
Asunto(s)
Duplicado del Terminal Largo de VIH , Proteínas de la Nucleocápside/química , Pliegue del ARN , ARN Viral/química , Algoritmos , Secuencia de Bases , Sitios de Unión/genética , VIH-1/química , VIH-1/genética , VIH-1/metabolismo , Cinética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Unión Proteica , Estabilidad del ARN , ARN Viral/genética , ARN Viral/metabolismo , Transcripción Reversa , TermodinámicaRESUMEN
RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. Here, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots â¼90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATP hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. This bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.
Asunto(s)
Bacterias/enzimología , Cronobacter/enzimología , ADN/química , RecQ Helicasas/química , Adenosina Trifosfato/química , Anisotropía , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , ADN de Cadena Simple/química , Escherichia coli/enzimología , Genoma Bacteriano , Hidrólisis , Unión ProteicaRESUMEN
Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive ß-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators.
Asunto(s)
Cisteína/fisiología , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacología , Células HEK293 , Humanos , Deficiencia de la Lecitina Colesterol Aciltransferasa/metabolismo , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Compuestos de Sulfhidrilo/químicaRESUMEN
RecQ DNA helicases are critical for proper maintenance of genomic stability, and mutations in multiple human RecQ genes are linked with genetic disorders characterized by a predisposition to cancer. RecQ proteins are conserved from prokaryotes to humans and in all cases form higher-order complexes with other proteins to efficiently execute their cellular functions. The focus of this review is a conserved complex that is formed between RecQ helicases and type-I topoisomerases. In humans, this complex is referred to as the BLM dissolvasome or BTR complex, and is comprised of the RecQ helicase BLM, topoisomerase IIIα, and the RMI proteins. The BLM dissolvasome functions to resolve linked DNA intermediates without exchange of genetic material, which is critical in somatic cells. We will review the history of this complex and highlight its roles in DNA replication, recombination, and repair. Additionally, we will review recently established interactions between BLM dissolvasome and a second set of genome maintenance factors (the Fanconi anemia proteins) that appear to allow coordinated genome maintenance efforts between the two systems.
Asunto(s)
Reparación del ADN , Replicación del ADN , RecQ Helicasas/metabolismo , Anafase , Animales , Síndrome de Bloom/genética , ADN/genética , Daño del ADN , Anemia de Fanconi/genética , Inestabilidad Genómica , Humanos , Mutación , Estructura Terciaria de Proteína , RecQ Helicasas/genética , RecQ Helicasas/fisiologíaRESUMEN
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
RESUMEN
The strict human pathogen Neisseria gonorrhoeae utilizes homologous recombination to antigenically vary the pilus, thus evading the host immune response. High-frequency gene conversion reactions between many silent pilin loci and the expressed pilin locus (pilE) allow for numerous pilus variants per strain to be produced from a single strain. For pilin antigenic variation (Av) to occur, a guanine quartet (G4) structure must form upstream of pilE. The RecQ helicase is one of several recombination or repair enzymes required for efficient levels of pilin Av, and RecQ family members have been shown to bind to and unwind G4 structures. Additionally, the vast majority of RecQ helicase family members encode one "helicase and RNase D C-terminal" (HRDC) domain, whereas the N. gonorrhoeae RecQ helicase gene encodes three HRDC domains, which are critical for pilin Av. Here, we confirm that deletion of RecQ HRDC domains 2 and 3 causes a decrease in the frequency of pilin Av comparable to that obtained with a functional knockout. We demonstrate that the N. gonorrhoeae RecQ helicase can bind and unwind the pilE G4 structure. Deletion of the RecQ HRDC domains 2 and 3 resulted in a decrease in G4 structure binding and unwinding. These data suggest that the decrease in pilin Av observed in the RecQ HRDC domain 2 and 3 deletion mutant is a result of the enzyme's inability to efficiently bind and unwind the pilE G4 structure.
Asunto(s)
Variación Antigénica/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/metabolismo , RecQ Helicasas/química , RecQ Helicasas/metabolismo , Variación Antigénica/genética , Proteínas Bacterianas/genética , Dicroismo Circular , Proteínas Fimbrias/genética , Polarización de Fluorescencia , Neisseria gonorrhoeae/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , RecQ Helicasas/genéticaRESUMEN
Lecithin:cholesterol acyltransferase (LCAT) catalyzes a critical step of reverse cholesterol transport by esterifying cholesterol in high density lipoprotein (HDL) particles. LCAT is activated by apolipoprotein A-I (ApoA-I), which forms a double belt around HDL, however the manner in which LCAT engages its lipidic substrates and ApoA-I in HDL is poorly understood. Here, we used negative stain electron microscopy, crosslinking, and hydrogen-deuterium exchange studies to refine the molecular details of the LCAT-HDL complex. Our data are consistent with LCAT preferentially binding to the edge of discoidal HDL near the boundary between helix 5 and 6 of ApoA-I in a manner that creates a path from the lipid bilayer to the active site of LCAT. Our results provide not only an explanation why LCAT activity diminishes as HDL particles mature, but also direct support for the anti-parallel double belt model of HDL, with LCAT binding preferentially to the helix 4/6 region.
Asunto(s)
Lipoproteínas HDL/química , Modelos Moleculares , Complejos Multiproteicos/química , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Conformación Proteica , Sitios de Unión , Dominio Catalítico , Lisina/química , Lisina/metabolismo , Espectrometría de Masas , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Unión Proteica , Proteínas Recombinantes , Relación Estructura-ActividadRESUMEN
Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients.
Asunto(s)
HDL-Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Dominio Catalítico , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Células HEK293 , Humanos , Lípidos de la Membrana/metabolismo , Mutación/genética , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Conformación Proteica , Electricidad Estática , Relación Estructura-ActividadRESUMEN
Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for resensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay, and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol.