Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 184(2): 658-665, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32663164

RESUMEN

Cross-family transcription factor (TF) interactions play critical roles in the regulation of plant developmental and metabolic pathways. WRINKLED1 (WRI1) is a key TF governing oil biosynthesis in plants. However, little is known about WRI1-interacting factors and their roles in oil biosynthesis. We screened a TF library using Arabidopsis (Arabidopsis thaliana) WRI1 (AtWRI1) as bait in yeast two-hybrid assays and identified three TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family TFs, namely TCP4, TCP10, and TCP24, as AtWRI1-interacting partners. The physical interaction between AtWRI1 and TCPs was further validated using bimolecular fluorescence complementation assays. TCPs play important roles in various plant developmental processes; however, their involvement in fatty acid biosynthesis was not previously known. Coexpression of TCP4, but not TCP10 or TCP24, with AtWRI1 reduced AtWRI1-mediated oil biosynthesis in Nicotiana benthamiana leaves. Transcriptomic analysis in transgenic Arabidopsis plants with enhanced TCP4 activity engineered by expressing rTCP4 (i.e. miR319-resistant TCP4) revealed that AtWRI1 target genes were significantly repressed. TCP4 expression is strongly correlated with AtWRI1 during embryo development. A tcp4 loss-of-function mutant, the jaw-D mutant with a strong reduction of TCP4 expression, and a tcp2 tcp4 tcp10 triple mutant accumulated more seed oil than wild-type Arabidopsis. In addition, TCP4 repressed the AtWRI1-mediated transactivation of the promoters of fatty acid biosynthetic genes. Collectively, our findings suggest that TCP4 represses fatty acid biosynthetic gene expression through interaction with AtWRI1, leading to a reduction of AtWRI1-mediated seed oil accumulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/biosíntesis , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis , Semillas/crecimiento & desarrollo , Nicotiana
2.
Plant J ; 88(2): 228-235, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27322486

RESUMEN

Plant 14-3-3 proteins are phosphopeptide-binding proteins, belonging to a large family of proteins involved in numerous physiological processes including primary metabolism, although knowledge about the function of 14-3-3s in plant lipid metabolism is sparse. WRINKLED1 (WRI1) is a key transcription factor that governs plant oil biosynthesis. At present, AtWRI1-interacting partners remain largely unknown. Here, we show that 14-3-3 proteins are able to interact with AtWRI1, both in yeast and plant cells. Transient co-expression of 14-3-3- and AtWRI1-encoding cDNAs led to increased oil biosynthesis in Nicotiana benthamiana leaves. Stable transgenic plants overproducing a 14-3-3 protein also displayed increased seed oil content. Co-production of a 14-3-3 protein with AtWRI1 enhanced the transcriptional activity of AtWRI1. The 14-3-3 protein was found to increase the stability of AtWRI1. A possible 14-3-3 binding motif was identified in one of the two AP2 domains of AtWRI1, which was also found to be critical for the interaction of AtWRI1 with an E3 ligase linker protein. Thus, we hypothesize a regulatory mechanism by which the binding of 14-3-3 to AtWRI1 interferes with the interaction of AtWRI1 and the E3 ligase, thereby protecting AtWRI1 from degradation. Taken together, our studies identified AtWRI1 as a client of 14-3-3 proteins and provide insights into a role of 14-3-3 in mediating plant oil biosynthesis.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Proteínas 14-3-3/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Unión Proteica , Estabilidad Proteica , Semillas/genética , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética
3.
J Exp Bot ; 68(16): 4627-4634, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28981783

RESUMEN

WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Transporte Biológico/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Proteínas de Transporte de Membrana/genética , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/genética
4.
Plant J ; 83(5): 864-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26305482

RESUMEN

WRINKLED1 (WRI1) is a key transcription factor governing plant oil biosynthesis. We characterized three intrinsically disordered regions (IDRs) in Arabidopsis WRI1, and found that one C-terminal IDR of AtWRI1 (IDR3) affects the stability of AtWRI1. Analysis by bimolecular fluorescence complementation and yeast-two-hybrid assays indicated that the IDR3 domain does not determine WRI1 stability by interacting with BTB/POZ-MATH proteins connecting AtWRI1 with CULLIN3-based E3 ligases. Analysis of the WRI1 sequence revealed that a putative PEST motif (proteolytic signal) is located at the C-terminal region of AtWRI1(IDR) (3). We also show that a 91 amino acid domain at the C-terminus of AtWRI1 without the PEST motif is sufficient for transactivation. We found that removal of the PEST motif or mutations in putative phosphorylation sites increased the stability of AtWRI1, and led to increased oil biosynthesis when these constructs were transiently expressed in tobacco leaves. Oil content was also increased in the seeds of stable transgenic wri1-1 plants expressing AtWRI1 with mutations in the IDR3-PEST motif. Taken together, our data suggest that intrinsic disorder of AtWRI1(IDR3) may facilitate exposure of the PEST motif to protein kinases. Thus, phosphorylation of the PEST motif in the AtWRI1(IDR) (3) domain may affect AtWRI1-mediated plant oil biosynthesis. The results obtained here suggest a means to increase accumulation of oils in plant tissues through WRI1 engineering.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aceites de Plantas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Datos de Secuencia Molecular , Mutación , Fosforilación , Plantas Modificadas Genéticamente , Estabilidad Proteica , Estructura Terciaria de Proteína , Nicotiana/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA