RESUMEN
The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.
Asunto(s)
Cambio Climático , Fósforo , Bosque Lluvioso , Suelo , Árboles , Clima Tropical , Aclimatación , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Secuestro de Carbono , Cationes/metabolismo , Cationes/farmacología , Cambio Climático/estadística & datos numéricos , Modelos Biológicos , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fósforo/metabolismo , Fósforo/farmacología , Suelo/química , Árboles/efectos de los fármacos , Árboles/metabolismo , IncertidumbreRESUMEN
Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized. Through analysis of submicron aerosol samples from the Green Ocean Amazon (GoAmazon2014/5) field campaign by two-dimensional gas chromatography coupled with machine learning, â¼1300 unique compounds were traced and characterized over two seasons. Fires and urban emissions produced chemically and interseasonally distinct impacts on product signatures, with only â¼50% of compounds observed in both seasons. Seasonally unique populations point to the importance of aqueous processing in Amazonian aerosol aging, but further mechanistic insights are impeded by limited product identity knowledge. Less than 10% of compounds were identifiable at an isomer-specific level. Overall, the findings (i) provide compositional characterization of anthropogenic influence on submicron organic aerosol in the Amazon, (ii) identify key season-to-season differences in chemical signatures, and (iii) highlight high-priority knowledge gaps in current speciated knowledge.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Estaciones del Año , Aerosoles/análisis , Polvo/análisisRESUMEN
Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 µg m-3 reduction in sulfate corresponds with at least â¼0.5 µg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, â¼97% in the Amazon and â¼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.
Asunto(s)
Contaminantes Atmosféricos , Hemiterpenos , Aerosoles/análisis , Brasil , Butadienos , Pentanos , Sudeste de Estados UnidosRESUMEN
Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.
Asunto(s)
Contaminantes Atmosféricos/análisis , Butadienos/química , Radicales Libres/análisis , Hemiterpenos/química , Óxido Nítrico/química , Pentanos/química , Fotoquímica , Bosque Lluvioso , Acroleína/análogos & derivados , Acroleína/análisis , Atmósfera , Butadienos/efectos de la radiación , Butanonas/análisis , Hemiterpenos/efectos de la radiación , Humanos , Oxidación-Reducción , Pentanos/efectos de la radiación , Peróxidos/químicaRESUMEN
Exchange of atmospheric organic compounds between gas and particle phases is important in the production and chemistry of particle-phase mass but is poorly understood due to a lack of simultaneous measurements in both phases of individual compounds. Measurements of particle- and gas-phase organic compounds are reported here for the southeastern United States and central Amazonia. Polyols formed from isoprene oxidation contribute 8% and 15% on average to particle-phase organic mass at these sites but are also observed to have substantial gas-phase concentrations contrary to many models that treat these compounds as nonvolatile. The results of the present study show that the gas-particle partitioning of approximately 100 known and newly observed oxidation products is not well explained by environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle fractions than expected from absorptive equilibrium partitioning models. These observations support the conclusion that many commonly measured biogenic oxidation products may be bound in low-volatility mass (e.g., accretion products, inorganic-organic adducts) that decomposes to individual compounds on analysis. However, the nature and extent of any such bonding remains uncertain. Similar conclusions are reach for both study locations, and average particle fractions for a given compound are consistent within â¼25% across measurement sites.
Asunto(s)
Aerosoles , Compuestos Orgánicos/química , Oxidación-Reducción , Presión de Vapor , VolatilizaciónRESUMEN
The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.
Asunto(s)
Butadienos/metabolismo , Carbono/metabolismo , Hemiterpenos/metabolismo , Pentanos/metabolismo , Terpenos/metabolismo , Árboles/fisiología , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Ambiente , Calor , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Temperatura , Árboles/efectos de la radiaciónRESUMEN
Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.
Asunto(s)
Conservación de los Recursos Naturales , Incendios , Bosques , Actividades Humanas , Árboles , Biomasa , Brasil , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Pradera , Humanos , Bosque Lluvioso , Árboles/crecimiento & desarrollo , Clima TropicalAsunto(s)
Forma BB de la Creatina-Quinasa/sangre , Forma MB de la Creatina-Quinasa/sangre , Mieloma Múltiple/diagnóstico , Anciano , Alquilantes/uso terapéutico , Autoanticuerpos/inmunología , Forma BB de la Creatina-Quinasa/inmunología , Forma MB de la Creatina-Quinasa/inmunología , Femenino , Humanos , Inmunoelectroforesis , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunofenotipificación , Mieloma Múltiple/tratamiento farmacológicoRESUMEN
This research aims to assess air quality in a transitional location between city and forest in the Amazon region. Located downwind of the Manaus metropolitan region, this study is part of the large-scale experiment GoAmazon2014/5. Based on their pollutant potential, inhalable particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), hydrogen sulfide (H2S), benzene, toluene, ethylbenzene and meta-, orto-, para-xylene (BTEX) were selected for analysis. Sampling took place during the wet season (March-April 2014) and dry season (August-October 2014). The number of forest fires in the surroundings was higher during the dry wet season. Results show significant increase during the dry season in mass concentration (wet: <0.01-10⯵gâ¯m-3; dry: 9.8-69⯵gâ¯m-3), NH4+ soluble content (wet: 13-125⯵gâ¯m-3; dry: 86-323⯵gâ¯m-3) and K+ soluble content (wet: 11-168⯵gâ¯m-3; dry 60-356⯵gâ¯m-3) of the PM2.5, and O3 levels (wet: 1.4-14⯵gâ¯m-3; dry: 1.0-40⯵gâ¯m-3), indicating influence of biomass burning emissions. BTEX concentrations were low in both periods, but also increased during the dry season. A weak correlation in the time series of the organic and inorganic gaseous pollutants indicates a combination of different sources in both seasons and NO2 results suggest a spatial heterogeneity in gaseous pollutants levels beyond initial expectations.
RESUMEN
Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate-volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12 h time resolution and performed hourly in situ measurements with a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) at a rural site ("T3") located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate-volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and 4 diterpenes with mean concentrations in the range 0.01-6.04 ngm-3 (1-670ppqv). We estimate that sesquiterpenes contribute approximately 14 and 12% to the total reactive loss of O3 via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from ~ 50-70 % for within-canopy reactive O3 loss attributed to the ozonolysis of highly reactive sesquiterpenes (e.g., ß-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the central Amazon region. Synthesized authentic standards were also used to quantify gas- and particle-phase oxidation products derived from ß-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 0.4-5 % (median 1 %) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm that more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.
RESUMEN
Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.
RESUMEN
The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1) year(-1), but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.
Asunto(s)
Dióxido de Carbono/análisis , Carbono/química , Bosques , Agua/química , Atmósfera , Brasil , Calibración , Cambio Climático , Sequías , Lluvia , Análisis de Regresión , Ríos , Estaciones del Año , Suelo , Clima TropicalRESUMEN
Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on CO2 emission in the central Amazon region. The ring insertion effect increased the soil emission about 13-20 percent for sandy and loamy soils during the firsts 4-7 hours, respectively. After rainfall events below 2 mm, the soil respiration did not change, but for rainfall greater than 3 mm, after 2 hours there was a decrease in soil temperature and respiration of about 10-34 percent for the loamy and sand soils, with emissions returning to normal after around 15-18 hours. The size of the measurement areas and the spatial distribution of soil respiration were better estimated using the Shuttle Radar Topographic Mission (SRTM) data. The Campina reserve is a mosaic of bare soil, stunted heath forest-SHF and tall heath forest-THF. The estimated total average CO2 emissions from the area was 3.08±0.8 µmol CO2 m-2 s-1. The Cuieiras reserve is another mosaic of plateau, slope, Campinarana and riparian forests and the total average emission from the area was 3.82±0.76 µmol CO2 m-2 s-1. We also found that the main control factor of the soil respiration was soil temperature, with 90 percent explained by regression analysis. Automated soil respiration datasets are a good tool to improve the technique and increase the reliability of measurements to allow a better understanding of all possible factors driven by soil respiration processes.
Respiração do solo possui um importante papel no ciclo do carbono em florestas tropicais Amazônicas. Entretanto poucas medidas de respiração do solo foram feitas. Neste estudo são apontados os efeitos na metodologia de instalação dos anéis no solo, bem como os efeitos da precipitação e a distribuição espacial da emissão de CO2 na Amazônia central. Os efeitos da inserção de anéis no solo aumentaram de 13 a 20 por cento para o solo arenoso e argiloso, o efeito durou de 4 a 7 horas, respectivamente. Já os efeitos na precipitação, notamos que os eventos abaixo de 2 mm a respiração do solo permaneceu indiferente, mas para precipitação acima de 3 mm, 2 horas depois, houve uma diminuição da temperatura e respiração em 10 a 34 por cento para o solo argilosos e arenosos, retornando a emissão normal após 15 a 18 horas. Para estimar a distribuição espacial da respiração do solo e o tamanho correto das áreas medidas, foram utilizadas as imagens do Shuttle Radar Topographic Mission (SRTM). Considerando que a Reserva de Campina é um mosaico de solo desnudo, floresta alagável de baixa e alta estatura (SHF e THF). A emissão total média de CO2 para a área foi de 3.08±0.8 µmol CO2 m-2 s-1. Já a Reserva do Cuieiras possui outro mosaico de florestas de platôs, encostas, Campinaranas e riparias, sendo a emissão média total desta área foram de 3.82±0.76 µmol CO2 m-2 s-1. Encontramos também que a respiração do solo foi controlada pela temperatura do solo, sendo uma correlação de 90 por cento encontrada pela análise de regressão. Dados obtidos com sistema automático de respiração do solo é uma grande oportunidade de melhoramento da técnica e o aumento da confiança nas medidas em relação aos possíveis fatores que controlam os processos de emissão de CO2 do solo.
Asunto(s)
Suelo , Temperatura , Precipitación AtmosféricaRESUMEN
Medidas mensais da altura da pastagem, biomassa total, variações de biomassa viva e morta, a área específica foliar (SLA) e o Índice de Área de Folha (IAF) de fevereiro de 1999 a janeiro de 2005 na Fazenda Nossa Senhora (FNS) e em Rolim de Moura (RDM) entre Fevereiro a Março de 1999, Rondônia, Brasil. A pastagem predominante é Urochloa brizantha (Hochst. ex A. Rich) R. D. Webster (99 por cento na FNS e 76 por cento em RDM), com pequenas manchas de Urochloa humidicula (Rendle). A altura média anual da grama foi de ~0,16 m. Com o pastejo, o mínimo mensal foi de 0,09 m (estação seca) e máximo de 0,3 m sem pastejo (estação úmida). O IAF, biomassa total, material morto, vivo e SLA tiveram valores médios de 2,5 m² m-2 , 2202 kg ha-1, 2916 kg ha-1 e 19 m² kg-1 respectivamente. A média mensal da biomassa foi 4224 kg ha-1 em 2002 e 6667 kg ha-1 em 2003. Grande variação sazonal do material vivo e morto, sendo mais alto o vivo durante a estação úmida (3229 contra 2529 kg ha-1), sendo o morto maior durante a seca (2542 contra 1894 kg ha-1). O nível de água no solo variou de -3,1 a -6,5 m durante as estações. Em médias anuais os IAF foram de 1,4 em 2000 a 2,8 em 2003 e o SLA entre 16,3 m² kg-1 em 1999 e 20,4 m² kg-1 em 2001. As observações do Albedo variaram de 0,18 para 0,16 em relação aos altos valores de IAF.
Monthly measurements of the grass height, total above-ground biomass and the proportions of live and dead biomass, Specific Leaf Area (SLA) and Leaf Area Index (LAI) were made in one cattle ranch at the Fazenda Nossa Senhora (FNS) (February of 1999 to January of 2005) and also in Rolim de Moura (RDM) (February to March of 1999) in Rondônia state. The predominant grass species is Urochloa brizantha (Hochst. ex A. Rich) R. D. Webster (covering 99 percent of the area in FNS and 76 percent in RDM), with minor patches of Urochloa humidicula. This pasture was regularly grazed. The average grass height was 0.16 m but monthly value varied between 0.09 m after intensive grazing in the dry season to 0.32 m in a wet season without grazing. The LAI, total biomass, dead plant material, live above-ground plant material and SLA average 2,5 m² m-2, 2202 kg ha-1, 2916 kg ha-1 and 19 m² kg-1 respectively. The monthly average above-ground biomass showed little seasonal variation, but annual averages ranged from 4224 kg ha-1 in 2002 to 6667 kg ha-1 in 2003. Live biomass was significantly higher during the wet season than during the dry season (3229 versus 2529 kg ha-1) whereas dead biomass was higher during the dry season than during the wet season (2542 versus 1894 kg ha-1). The groundwater levels changes from -3.1 m to -6.5 m during the wet and dry seasons, respectively. The annual average of SLA was 16.3 m² kg-1 in 1999 and 20.4 m² kg-1 in 2001. And for LAI was 1.5 in 2000 to 2.8 in 2003. The Albedo changes from 0.18 down to 0.16 at higher values of LAI.
Asunto(s)
Pastizales , Biomasa , Ecosistema Amazónico , Factor Inductor de la ApoptosisRESUMEN
Os parâmetros do "Simplified Simple Biosphere Model"-SSiB foram validados e posteriormente calibrados para os sítios de pastagem da Fazenda Nossa Senhora Aparecida (62°22'W; 10°45'S) e de floresta da Reserva Biológica do Jaru (62°22'W; 10°45'S), ambos situados no estado de Rondônia. Foram utilizadas medidas micrometeorológicas e hidrológicas obtidas durante o período seco de 2001, como parte do Experimento de Grande Escala da Biosfera-Atmosfera na Amazônia - LBA. Os resultados indicam que o modelo simulou bem o saldo de radiação, tanto na pastagem quanto na floresta. O fluxo de calor latente foi superestimado nos dois sítios nos períodos de simulação, o que deve estar relacionado aos parâmetros utilizados no cálculo dessa variável. O modelo subestimou o fluxo de calor sensível na pastagem e na floresta, principalmente no período noturno; porém, para a floresta, os valores foram mais próximos daqueles observados. Com os parâmetros ajustados, melhores estimativas dos fluxos de calor latente e de calor sensível foram geradas e, conseqüentemente, representou melhor as partições de energia na floresta e na pastagem.