Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Virol ; 97(11): e0130023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37888981

RESUMEN

IMPORTANCE: We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using synthetic communities of varying complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 genera of plant viruses. The results obtained confirm that the dsRNA-based approach provides a more complete representation of the RNA virome, in particular, for high complexity ones. However, for viromes of low to medium complexity, VANA appears a reasonable alternative and would be the preferred choice if analysis of DNA viruses is of importance. Several parameters impacting performance were identified as well as a direct relationship between the completeness of virome description and sample sequencing depth. The strategy, results, and tools used here should prove useful in a range of virome analysis efforts.


Asunto(s)
Metagenómica , Biología Sintética , Viroma , Virus , Virus ADN/clasificación , Virus ADN/genética , Metagenómica/métodos , Metagenómica/normas , Virión/genética , Viroma/genética , Biología Sintética/métodos , ARN Bicatenario/genética , Virus/clasificación , Virus/genética , Virus de Plantas/clasificación , Virus de Plantas/genética
2.
Phytopathology ; : PHYTO12230480R, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38376958

RESUMEN

There is limited information on the compared performances of biological, serological. and molecular assays with high-throughput sequencing (HTS) for viral indexing in temperate fruit crops. Here, using a range of samples of predetermined virological status, we compared two performance criteria (inclusivity and analytical sensitivity) of enzyme-linked immunosorbent assay (ELISA), molecular hybridization, reverse transcription (RT)-PCR, and double-stranded RNA (dsRNA) HTS for the detection of a total of 14 viruses (10 genera) and four viroids (three genera). When undiluted samples from individual plants were used, ELISA had the lowest performance, with an overall detection rate of 68.7%, followed by RT-PCR (82.5%) and HTS (90.7%; 100% if considering only viruses). The lower performance of RT-PCR reflected the inability to amplify some isolates as a consequence of point mutations affecting primer-binding sites. In addition, HTS identified viruses that had not been identified by other assays in nearly two-thirds of the samples. Analysis of serial dilutions of fruit tree samples allowed comparison of analytical sensitivities for various viruses. ELISA showed the lowest analytical sensitivity, but RT-PCR showed higher analytical sensitivity than HTS for most of the samples. Overall, these results confirm the superiority of HTS over biological indexing in terms of speed and inclusivity and show that while the absolute analytical sensitivity of RT-PCR tends to be higher than that of HTS, PCR inclusivity is affected by viral genetic diversity. Taken together, these results make a strong case for the implementation of HTS-based approaches in fruit tree viral testing protocols supporting quarantine and certification programs.

3.
Arch Virol ; 168(10): 243, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676309

RESUMEN

In this study, samples collected from eight sweet cherry trees in northern Greece were analyzed by high-throughput sequencing for the presence of viruses. Bioinformatic analysis revealed the presence of divergent isolates of cherry latent virus 1 (CLV-1), a recently identified trichovirus in a sweet cherry accession imported into the USA from the Republic of Georgia. The complete genome sequences of seven CLV-1 isolates were determined, and phylogenetic analysis indicated that they belonged to a separate clade from the previously characterized Georgian isolate. A small-scale survey confirmed the presence of CLV-1 in 47 out of 151 sweet cherry samples tested, and partial sequencing of 15 isolates showed a high degree of nucleotide sequence similarity among them.


Asunto(s)
Flexiviridae , Prunus avium , Grecia , Filogenia , Biología Computacional , Flexiviridae/genética
4.
Arch Virol ; 168(7): 180, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311875

RESUMEN

Two members of the family Betaflexiviridae associated with yam (Dioscorea spp.) have been described so far: yam latent virus (YLV) and yam virus Y (YVY). However, their geographical distribution and molecular diversity remain poorly documented. Using a nested RT-PCR assay, we detected YVY in D. alata, D. bulbifera, D. cayenensis, D. rotundata, and D. trifida in Guadeloupe, and in D. rotundata in Côte d'Ivoire, thus extending the known host range of this virus and geographical distribution. Using amplicon sequencing, we determined that the molecular diversity of YVY in the yam samples analyzed in this work ranged between 0.0 and 29.1% and that this diversity is partially geographically structured. We also identified three isolates of banana mild mosaic virus (BanMMV) infecting D. alata in Guadeloupe, providing the first evidence for BanMMV infection in yam.


Asunto(s)
Carlavirus , Dioscorea , Flexiviridae , Virus del Mosaico , Musa
5.
Phytopathology ; 113(9): 1729-1744, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37399026

RESUMEN

High-throughput sequencing (HTS) and sequence mining tools revolutionized virus detection and discovery in recent years, and implementing them with classical plant virology techniques results in a powerful approach to characterize viruses. An example of a virus discovered through HTS is Solanum nigrum ilarvirus 1 (SnIV1) (Bromoviridae), which was recently reported in various solanaceous plants from France, Slovenia, Greece, and South Africa. It was likewise detected in grapevines (Vitaceae) and several Fabaceae and Rosaceae plant species. Such a diverse set of source organisms is atypical for ilarviruses, thus warranting further investigation. In this study, modern and classical virological tools were combined to accelerate the characterization of SnIV1. Through HTS-based virome surveys, mining of sequence read archive datasets, and a literature search, SnIV1 was further identified from diverse plant and non-plant sources globally. SnIV1 isolates showed relatively low variability compared with other phylogenetically related ilarviruses. Phylogenetic analyses showed a distinct basal clade of isolates from Europe, whereas the rest formed clades of mixed geographic origin. Furthermore, systemic infection of SnIV1 in Solanum villosum and its mechanical and graft transmissibility to solanaceous species were demonstrated. Near-identical SnIV1 genomes from the inoculum (S. villosum) and inoculated Nicotiana benthamiana were sequenced, thus partially fulfilling Koch's postulates. SnIV1 was shown to be seed-transmitted and potentially pollen-borne, has spherical virions, and possibly induces histopathological changes in infected N. benthamiana leaf tissues. Overall, this study provides information to better understand the diversity, global presence, and pathobiology of SnIV1; however, its possible emergence as a destructive pathogen remains uncertain. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Ilarvirus , Solanum , Filogenia , Enfermedades de las Plantas , Nicotiana
6.
Phytopathology ; 113(8): 1595-1604, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37081712

RESUMEN

High-throughput sequencing of two lettuces showing virus-like symptoms in France provided evidence of infection by members of the family Secoviridae. One plant (JG1) had a complex mixed infection that involved, among others, a novel waikavirus (lettuce waikavirus 1) and two isolates of a sequivirus related to lettuce mottle virus (LeMoV). The second lettuce plant (JG2) was singly infected by LeMoV. Complete genomic sequences were obtained for all four isolates and, in addition, near complete genome sequences were obtained for other LeMoV or LeMoV-related isolates (from French cultivated and wild lettuces and from a Brazilian cultivated lettuce) and for two isolates of another family Asteraceae-infecting sequivirus, dandelion yellow mosaic virus (DaYMV). Analysis of these genomic sequences allows the proposal of tentative genome organization for the various viruses and clarification of their phylogenetic relationships. Sequence and host range comparisons point to significant differences between the two sequivirus isolates identified in the JG1 plant and LeMoV isolates from France and Brazil, suggesting they belong to a novel species for which the name lettuce star mosaic virus is proposed.

7.
Phytopathology ; 113(2): 345-354, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35972890

RESUMEN

Members of the genus Luteovirus are responsible for economically destructive plant diseases worldwide. Over the past few years, three luteoviruses infecting Prunus trees have been characterized. However, the biological properties, prevalence, and genetic diversity of those viruses have not yet been studied. High-throughput sequencing of samples of various wild, cultivated, and ornamental Prunus species enabled the identification of four novel species in the genus Luteovirus for which we obtained complete or nearly complete genomes. Additionally, we identified another new putative species recovered from Sequence Read Archive data. Furthermore, we conducted a survey on peach-infecting luteoviruses in eight European countries. Analyses of 350 leaf samples collected from germplasm, production orchards, and private gardens showed that peach-associated luteovirus (PaLV), nectarine stem pitting-associated virus (NSPaV), and a novel luteovirus, peach-associated luteovirus 2 (PaLV2), are present in all countries; the most prevalent virus was NSPaV, followed by PaLV. The genetic diversity of these viruses was also analyzed. Moreover, the biological indexing on GF305 peach indicator plants demonstrated that PaLV and PaLV2, like NSPaV, are transmitted by graft at relatively low rates. No clear viral symptoms have been observed in either graft-inoculated GF305 indicators or different peach tree varieties observed in an orchard. The data generated during this study provide a broader overview of the genetic diversity, geographical distribution, and prevalence of peach-infecting luteoviruses and suggest that these viruses are likely asymptomatic in peach under most circumstances.


Asunto(s)
Luteovirus , Prunus , Virus , Luteovirus/genética , Enfermedades de las Plantas , Virus/genética , Secuenciación de Nucleótidos de Alto Rendimiento
8.
Plant Dis ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828707

RESUMEN

Vitis cryptic virus (VCV), a deltapartitivirus identified in Japan in Vitis coignetiae (Nabeshima and Abe, 2021), is known from only two other countries. It was detected in China (Fan et al., 2022) and in Russia, including in a V. labrusca and the Saperavi Severnyi interspecific hybrid (Shvets et al., 2022). There is no information on VCV pathogenicity but deltapartitiviruses are generally not pathogenic. Fan et al. (2022) reported VCV graft transmission and chlorotic mottling symptoms developing on a graft-inoculated vine, in spite of the fact that cryptic viruses are not known to move cell-to-cell or be graft-transmissible. In fall 2022, a few plants of the Prior interspecific hybrid (https://www.vivc.de) showed unusual red blotch and leaf curl in Bordeaux (France), prompting the HTS analysis of two plants using total leaf RNA. Following host genome substraction, the ribodepleted RNASeq data was assembled de novo using CLC Genomics Workbench (Candresse et al., 2018) and contigs annotated by BlastX against the GenBank database. Rupestris stem pitting virus, grapevine pinot gris virus, hop stunt viroid and grapevine yellow speckle viroid 1 were identified. In addition, mycoviral contigs were identified, together with contigs for Rhopalosiphum padi virus and a divergent isolate of barley aphid RNA virus 10 (the later only in one plant), and the two genomic RNAs of VCV. The VCV RNA1 contigs were 1570 and 1574 nucleotides (nt) long, respectively, and 100% identical, showing 97.1% nt identity to a Japanese isolate (LC746759). They integrated 6480 and 4613 reads (0.2 and 0.4% of total substracted reads) for a coverage of 611 and 433x, respectively. The VCV RNA2 contigs were also 100% identical and shared 95.5% identity with a Japanese isolate (LC746761). They were 1518-1519 nt long, integrated 11338 and 9999 reads (0.4 and 0.9% of reads) for a coverage of 1109 and 972x, respectively. The Prior VCV RNAs were deposited in GenBank (OR474475-76). Specific RNA2 primers 5' TTACAGGTTTGATTGGAATCATG 3' and 5' ATAGTAGGTCCAATCACTAATC 3' (Tm 56°C) were used to confirm VCV presence in the original plants as well as in three other asymptomatic Prior vines. Amplicons 100% identical to the contigs were obtained from 4 of 5 plants. Two plants of Bronner, one of Prior parents, also tested positive. The rootstock (Fercal) of a VCV-infected Prior and two plants of another hybrid, Artaban, (sampled in the same plot as Prior) tested negative. BlastN datamining identified VCV reads in RNASeq data from a range of wild grapevines including V. acerifolia (SRX2885763), V. quinquangularis (SRX1496837), V. romanetii (SRR3938616), V. cinerea (SRR10135144), V. davidii (SRR3255926), V. amurensis (SRX13387918) and V. vinifera subsp. sylvestris (HAOE01029819, HAOE01001237). Although not experimentally verified, detection in wild Vitis, including V. amurensis, a Saperavi Severnyi, Bronner and Prior progenitor, suggests VCV might have been introduced in these hybrids through crosses aiming to develop powdery and downy mildew resistant varieties. To the best of our knowledge, this is the first report of VCV infection in grapevine in France. The symptoms that prompted this research have not recurred in 2023 and are not linked to VCV because the virus was also identified in symptomless Prior plants. The risk of introducing VCV in European grapevine through breeding efforts appears limited, but VCV may be present in fungal disease-resistant cultivars in a range of countries.

9.
Arch Virol ; 167(11): 2407-2409, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35962825

RESUMEN

We report the discovery of a new flavi-like virus identified in wild carrots (Daucus carota subsp. carota), using a double-stranded (ds)RNA high-throughput sequencing (HTS) approach. The new virus, tentatively named "carrot flavi-like virus 1" (CtFLV-1), has a large genome of 21.8 kb that harbours a single open reading frame encoding a 7,078-aa polyprotein with conserved RNA helicase (Hel) and RNA-dependent RNA polymerase (RdRp) domains. The new virus is phylogenetically related to recently described flavi-like viruses from arthropods, but its closest relative is a plant-associated virus, gentian Kobu-sho-associated virus (GKSaV). A pairwise comparison showed that these two viruses share 38.4% amino acid (aa) sequence identity in their polyproteins and 73% and 47.8% aa sequence identity in their conserved RdRp and Hel domains, respectively. Based on their similar genome organization and phylogenetic relationship, GKSaV and CtFLV-1 could form the basis for a new genus of plant-associated viruses, possibly within the family Flaviviridae, for which the name "Koshovirus" is proposed.


Asunto(s)
Daucus carota , Virus de Plantas , Virus ARN , Aminoácidos/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Virus de Plantas/genética , Poliproteínas/genética , ARN Helicasas/genética , Virus ARN/genética , ARN Bicatenario , ARN Viral/genética , ARN Polimerasa Dependiente del ARN
10.
Arch Virol ; 168(1): 14, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576617

RESUMEN

A novel potyvirus was identified in symptomatic hedge mustard (Sisymbrium officinale (L.) Scop.) and wild radish (Raphanus raphanistrum L.) in France. The nearly complete genome sequence of hedge mustard mosaic virus (HMMV) was determined, demonstrating that it belongs to a sister species to turnip mosaic virus (TuMV). HMMV readily infected several other members of the family Brassicaceae, including turnip, shepherd's purse (Capsella bursa-pastoris), and arabidopsis. The identification of HMMV as a Brassicaceae-infecting virus closely related to TuMV leads us to question the current scenario of TuMV evolution and suggests a possible alternative one in which transition from a monocot-adapted ancestral lifestyle to a Brassicaceae-adapted one could have occurred earlier than previously recognized.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.all OK.


Asunto(s)
Brassica napus , Potyvirus , Raphanus , Planta de la Mostaza/genética , Potyvirus/genética , Enfermedades de las Plantas
11.
Arch Virol ; 167(3): 917-922, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35107668

RESUMEN

Dioscorea mosaic associated virus (DMaV) is a member of the genus Sadwavirus, family Secoviridae, that is associated with mosaic symptoms in Dioscorea rotundata in Brazil. The genome of a DMaV isolate detected in D. trifida in Guadeloupe was sequenced by high-throughput sequencing. Using an RT-PCR-based detection assay, we found that DMaV infects D. alata, D. bulbifera, D. cayenensis-rotundata, D. esculenta, and D. trifida accessions conserved in Guadeloupe and Côte d'Ivoire and displays a very high level of molecular diversity in a relatively small region of the genome targeted by the assay. We also provide evidence that DMaV is also present in D. rotundata in Benin and in D. alata in Nigeria.


Asunto(s)
Dioscorea , Especificidad del Huésped , Secoviridae , Dioscorea/virología , Variación Genética , Filogenia , Secoviridae/clasificación
12.
Arch Virol ; 167(11): 2275-2280, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35842549

RESUMEN

Cordyline virus 1 (CoV1) is a velarivirus that has so far only been reported in ornamental Ti plants (Cordyline fruticosa). Using high-throughput sequencing, we identified CoV1 infection in yam accessions from Vanuatu. Using a specific RT-PCR assay, we found that CoV1 is also present and highly prevalent in Dioscorea alata, D. cayenensis, and D. trifida in Guadeloupe. Phylogenetic analysis showed that CoV1 isolates infecting yam in Guadeloupe display a low level of molecular diversity. These data provide insights into the transmission of CoV1 in yam in Guadeloupe.


Asunto(s)
Closteroviridae , Cordyline , Dioscorea , Variación Genética , Filogenia
13.
Arch Virol ; 167(11): 2355-2357, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35857149

RESUMEN

We report the complete genome sequence of a novel member of the genus Vitivirus (family Betaflexiviridae, subfamily Trivirinae) infecting pineapple. The complete genome sequence of this virus was obtained from total RNA extracted from pineapple leaf samples collected in Reunion Island, using a combination of high-throughput sequencing technologies. The viral genome is 6,757 nt long, excluding the poly(A) tail, and shares all the hallmarks of vitiviruses. Phylogenetic analysis performed on the replication-associated protein and capsid protein gene sequences unambiguously place this new virus, for which we propose the name "pineapple virus A", in the genus Vitivirus.


Asunto(s)
Ananas , Flexiviridae , Proteínas de la Cápside/genética , Flexiviridae/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , ARN , ARN Mensajero , ARN Viral/genética , Reunión
14.
Phytopathology ; 112(11): 2253-2272, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35722889

RESUMEN

Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ácidos Nucleicos , Virus de Plantas , Metagenómica/métodos , Ecosistema , Enfermedades de las Plantas , Virus de Plantas/genética , Virión/genética , Plantas
15.
Plant Dis ; 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939753

RESUMEN

Grapevine Red globe virus (GRGV) and grapevine rupestris vein feathering virus (GRVFV) are relatively recently described grape viruses that respectively belong to the genera Maculavirus and Marafivirus in the family Tymoviridae [1]. Owing to their rather recent description, still limited information on their biology, on their molecular variability and on their geographic distribution is available. Both viruses are apparently completely or largely asymptomatic in European grapevine and have likely been overlooked in a wide range of situations (Martelli, 2014). According to sequences in GenBank, GRGV has been identified in Asia (Iran, Japan, China), the Americas (USA, Brazil) and Europe (Spain, France, Slovenia, Hungary, Czech Republic and Germany). GRVFV has been reported from the same countries but also in Oceania (New Zealand, Australia) and from a range of other countries including India, Pakistan and South Korea for Asia, Canada for North America and Switzerland, Slovakia, Italy and Russia for Europe. Evidence for the presence of GRGV and GRVFV in grapevine plants from northern Portugal (variety(ies) unknown) was obtained through the bioinformatic analysis [2] of RNASeq Illumina data obtained from phloem scrapings from five grapevine samples collected in different plots in 2016 [3]. Following grapevine genome substraction, contigs assembly and Blast-based contigs annotation using CLC Genomics Workbench, two plants, #4 and #5b, yielded contigs representing near complete GRGV genomes. The plant #4 contig integrated 474 reads (0.15% of reads for an average coverage of 10.1x) while the corresponding values for the contig for plant #5b are 2185 reads (2.4% of total reads) for a coverage of 47.2x. The two GRGV contigs show 91.4% nucleotide (nt) identity and the closest GRGV full genome sequence in GenBank, MZ451067 from Canada, shares respectively 98.9% and 91.6% nt identity with them. The near complete genome contigs have been deposited in GenBank (ON603917 and ON603918). Simultaneously, two near full length genomic contigs for GRVFV were identified from plant #5b and have also been deposited in GenBank (ON603919 and ON603920). These contigs show 84.4% nt identity to each other and were respectively assembled from 4643 (5.2% of total reads) and 5326 reads (6.0% of total reads) for respective average coverages of 102.3x and 117.3x. The closest full GRVFV genome in GenBank is MZ027155 from the USA, with 84.3-85.3% nt identity. Confirmation of the presence of GRVG and GRVFV in the doubly infected plant #5b was achieved by specific RT-PCR assays. A published assay [4] was used for GRGV and primers GRVFV-Cp-F 5'AAYCCTGTCACHCTCCACTG3' and GRVFV-Cp-R 5'TTCATGGTGGTGCCDGTGAG3' (Tm 55°C) were used for GRVFV. The obtained 447nt GRGV amplicon showed a single difference with the HTS contig while the 218 nt GRVFV amplicon showed 3 mutations as compared to one of the HTS contigs. The different grapevines had initially been sampled because they showed relatively poor and stunted growth but besides GRVFV and/or GRGV the HTS analysis indicated that they were also infected by hop stunt viroid, grapevine yellow speckle viroid 1, grapevine rupestris stem pitting virus, plus respectively a novel nepovirus (plant #4) and grapevine leafroll-associated virus 2 and grapevine Pinot gris virus (plant #5b) so that the results reported here do not shed novel light on the potential pathogenicity of GRGV or GRVFV. To the best of our knowledge, this is the first report of GRGV and GRVFV in Portugal.

16.
Plant Dis ; 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302726

RESUMEN

Ash shoestring-associated virus (ASaV) is a recently described Emaravirus with five genome segments identified in Germany and Switzerland from European ash (Fraxinus excelsior) or South European flowering ash (F. ornus) trees with chlorotic spots or mosaics and leaf curling or leaf shoestring symptoms [1]. In summer 2021 several European ash trees with severe leaf mosaic and deformation were observed 50 km south east of Bordeaux (France). Double stranded RNAs were purified from the leaves of one of the trees (2021-432) and analyzed by Illumina high throughput sequencing (HTS, 2x150 nt) as described [2]. Following quality trimming, reads were assembled de novo (CLC Genomics Workbench 21, Qiagen) and contigs annotated by BlastX analysis. Contigs homologous to ASaV genomic RNAs 2 to 5 were identified. For ASaV RNA2, four contigs were identified which could be manually assembled to yield a single scaffold while a single contig was obtained for RNAs 3, 4 and 5. The RNA2 scaffold assembled 1,206 reads for an average coverage of 58.2x, while the corresponding values for RNAs 3 to 5 were respectively 21,381 reads (1,529x), 18,146 reads (1,266x) and 1,234 reads (97.4x). While no contig was identified for ASaV RNA1 (or for other viruses), mapping of reads on an RNA1 reference (OU466880) allowed to identify 25 reads for this genomic segment (average coverage 0.4x). In total, ASaV reads represented 3.9% of the ca. 1 million reads obtained from the ash sample. The RNAs 2 to 5 scaffolds for isolate 2021-432 have been deposited in GenBank (OP501824-7). They show between 94.6% and 97.6% nucleotide identity with the corresponding RNAs of a reference isolate (OU466881-4). In order to validate the presence of ASaV in the original tree, PCR primers were designed based on RNAs 1 and 3 sequences. Primers ASaV1-F (5'-ATTATTCACAGTATGAAAGGG-3') and ASaV1-R (5'-GGTGTGGAGAATATCAAACC-3') amplify a 286 nt RNA1 fragment, while primers ASaV3-F (5'-GCTATACCCAGCTGAGGTGC-3') and ASaV3-R (5'-GTGTGCAATTCTATCAGCCTC-3') amplify a 322 nt RNA3 fragment. Amplicons of the expected size were obtained and directly sequenced. The RNA3 amplicon sequence was identical to the corresponding region of the HTS contig, while the RNA1 amplicon was 97.5% identical to the OU466880 reference sequence. The same primer pairs and a third one, ASaV4-F (5'- GAGGTTGCTTTGATGTCAGG -3') and ASaV4-R (5'- TGCCTCTCCGATGGTGATG -3'), amplifying a 411 nt RNA4 fragment, were used to test a European ash (2022-91) showing similar mosaic and shoestring symptoms collected in spring 2022 about 170 km south of Bordeaux. Again, amplifications were positive and the sequences of the amplicons showed 94.3 to 96.5% nt identity with the corresponding regions of the reference ASaV isolate and 93.9 to 94.3% identity with the French 2021-432 isolate. The PCR amplicon sequences for the two French isolates have been deposited in GenBank (OP501828-32). To our knowledge, these results represent the first report of a natural infection of ASaV in European ash in France. Identification of the virus in two ash populations about 150 km apart suggests the virus maybe widespread. The finding of ASaV in an ash tree with severe leaf symptoms and in which no other virus was identified by HTS supports its role as the causal agent of the symptoms observed. Ash trees in Europe are already threatened by the invasive ash dieback agent [3] and ASaV represents a further potential threat that deserves to be evaluated.

17.
Plant Dis ; 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35771104

RESUMEN

As part of a cereals virome project high throughput sequencing (HTS)-based viral indexing was performed on plants with symptoms of barley yellow dwarf disease collected in June (2017-2020) in the main French cereals production areas. Total RNAs from 32 individual plants were purified (RNeasy Plant Mini Kit, Qiagen, Courtaboeuf, France) and Illumina sequenced (2x150 nt) following ribodepletion (Genewiz-Azenta, Leipzig, Germany). Following quality trimming, reads for each sample were de novo assembled (CLC Genomics Workbench 21, Qiagen) [1] and contigs annotated by BlastX analysis. In four winter barley samples collected in 2018 (18-58, 18-325 and 18-326) and 2019 (19-30A), besides contigs representing diverse viruses such as barley yellow dwarf viruses-PAV and PAS, Hordeum vulgare endornavirus, cereal yellow dwarf virus-RPV (18-326), wheat dwarf virus (18-325 and 18-326) and a novel Polerovirus (18-58 and 18-326), large contigs with high identity to barley virus G (BVG) were identified. BVG, a tentative Polerovirus, was initially reported in barley in South Korea in 2016 [2] and has so far been identified in a few other hosts including wheat, oat, maize, proso and foxtail millets as well as switchgrass. It has been reported from the USA and Australia [3] and, in Europe, from the Netherlands, Germany, Hungary and Greece [4]. Large BVG scaffolds representing near complete genomes could be reconstructed for each sample, integrating a total of 128.339, 7.188, 8.078 and 20.073 reads, for samples 19-30A, 18-58, 18325 and 18-326 respectively. Given that between 17.2 and 20.5 million reads had been obtained per sample, these values translate into between 0.04% (18-58 and 18-325) and 0.6% (19-30A) of total reads, and to average coverages of between 158x (18-58) and 2866x (19-30A) for the genomic scaffolds. The four assembled sequences (5584-5610 nt) have been deposited in GenBank (ON419453-ON419456). They are nearly identical (98.4 to 99.5% nt identity) and share between 97.7% and 98.5% nt identity with a barley reference isolate from the South Korea (NC_029906). To confirm the presence of BVG, a primer pair was designed based on available BVG sequences. Primers BVG-F(5'-CTAGCCCAACGAGTTGCGGG-3') and BVG-R(5'-GGTACAGAAGCTCTACGGTTC-3') amplifying a 394 nt were used in a two-step RT-PCR on new RNA extracts obtained from the 18-325 and 18-326 infected plants. The amplicons were directly sequenced and showed respectively 99.2% (ON419457, 18-325) and 100% (18-326) nt identity with the corresponding de novo scaffolds. The four analyzed samples have been collected respectively in 2018 (18-58, 18-325, 18-326) and 2019 (19-30A) in three different regions of France (Auvergne-Rhône-Alpes, Occitanie and Centre-Val de Loire), indicating a wide distribution and a persistence over time of BVG in France. To our knowledge, this represents the first report of a natural infection of BVG in cultivated winter barley in France. Presence of BVG may have been overlooked in a range of situation, as indicated by its retrospective discovery in a 34 years old Australian sample [3], possibly explaining its broad distribution in France. While the mixed infection status of the analyzed plants precludes any conclusion on its pathogenicity in French cereals, BVG has been reported to be associated with a range of symptoms in various hosts so that further studies to evaluate its prevalence and impact in France and to begin to understand its epidemiology are clearly warranted by the present results.

18.
Phytopathology ; 111(6): 1051-1058, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33084526

RESUMEN

Although chestnut mosaic disease (ChMD) was described several decades ago, its etiology is still not clear. Using classical approaches and high-throughput sequencing (HTS) techniques, we identified a novel Badnavirus that is a strong etiological candidate for ChMD. Two disease sources from Italy and France were submitted to HTS-based viral indexing. Total RNAs were extracted, ribodepleted, and sequenced on an Illumina NextSeq500 (2 × 150 nt or 2 × 75 nt). In each source, we identified a single contig of ≈7.2 kb that corresponds to a complete circular viral genome and shares homologies with various badnaviruses. The genomes of the two isolates have an average nucleotide identity of 90.5%, with a typical badnaviral genome organization comprising three open reading frames. Phylogenetic analyses and sequence comparisons showed that this virus is a novel species; we propose the name Chestnut mosaic virus (ChMV). Using a newly developed molecular detection test, we systematically detected the virus in symptomatic graft-inoculated indicator plants (chestnut and American oak) as well in chestnut trees presenting typical ChMD symptoms in the field (100 and 87% in France and Italy surveys, respectively). Datamining of publicly available chestnut sequence read archive transcriptomic data allowed the reconstruction of two additional complete ChMV genomes from two Castanea mollissima sources from the United States as well as ChMV detection in C. dentata from the United States. Preliminary epidemiological studies performed in France and central eastern Italy showed that ChMV has a high incidence in some commercial orchards and low within-orchard genetic diversity.


Asunto(s)
Badnavirus , Fagaceae/virología , Enfermedades de las Plantas/virología , Badnavirus/genética , Genoma Viral/genética , Sistemas de Lectura Abierta/genética , Filogenia
19.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597769

RESUMEN

Metagenomic studies have indicated that the diversity of plant viruses was until recently far underestimated. As important components of ecosystems, there is a need to explore the diversity and richness of the viruses associated with plant populations and to understand the drivers shaping their diversity in space and time. Two viral sequence enrichment approaches, double-stranded RNA (dsRNA) and virion-associated nucleic acids (VANA), have been used and compared here for the description of the virome of complex plant pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. A novel bioinformatics strategy was used to assess viral richness not only at the family level but also by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. A large viral diversity dominated by novel dsRNA viruses was detected in all sites, while a large between-site variability limited the ability to draw a clear conclusion on the impact of cultivation. A trend for a higher diversity of dsRNA viruses was nevertheless detected in unmanaged sites (118 versus 77 unique OTUs). The dsRNA-based approach consistently revealed a broader and more comprehensive diversity for RNA viruses than the VANA approach, whatever the assessment criterion. In addition, dissimilarity analyses indicated both approaches to be largely reproducible but not necessarily convergent. These findings illustrate features of phytoviromes in various ecosystems and a novel strategy for precise virus richness estimation. These results allow us to reason methodological choices in phytovirome studies and likely in other virome studies where RNA viruses are the focal taxa.IMPORTANCE There are today significant knowledge gaps on phytovirus populations and on the drivers impacting them but also on the comparative performance-methodological approaches for their study. We used and compared two viral sequence enrichment approaches, double-stranded RNAs (dsRNA) and virion-associated nucleic acids (VANA), for phytovirome description in complex pools representative of the most prevalent plant species in unmanaged and cultivated ecosystems. Viral richness was assessed by determining operational taxonomic units (OTU) following the clustering of conserved viral domains. There is some limited evidence of an impact of cultivation on viral populations. These results provide data allowing us to reason the methodological choices in virome studies. For researchers primarily interested in RNA viruses, the dsRNA approach is recommended because it consistently provided a more comprehensive description of the analyzed phytoviromes, but it understandably underrepresented DNA viruses and bacteriophages.


Asunto(s)
Virus ADN/genética , Genoma Viral , Metagenoma , Virus de Plantas/genética , Plantas/virología , Virus ARN/genética , Biología Computacional/métodos , Virus ADN/clasificación , Ecosistema , Variación Genética , Metagenómica/métodos , Filogenia , Virus de Plantas/clasificación , Virus ARN/clasificación , ARN Bicatenario/genética , ARN Viral/genética , Virión/clasificación , Virión/genética
20.
Arch Virol ; 165(9): 2123-2126, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32617763

RESUMEN

In this study, we report the complete genome sequence of a novel luteovirus detected in almond using high-throughput sequencing. The genome of the new luteovirus comprises 5,047 nucleotides, and its genomic organization is similar to that of the recently described nectarine stem pitting associated virus (NSPaV), with only four open reading frames, encoding replication-related proteins, the coat protein (CP), and a CP readthrough protein involved in the aphid transmission of luteovirids. Phylogenic and pairwise distance analyses showed that this virus shares 79% and 57.8% amino acid identity in the P1-P2 fusion protein and the P3-P5 protein, respectively, with the most closely related luteovirus, NSPaV, suggesting that it represents a novel species, for which the name "Almond associated luteovirus 1" is proposed. To our knowledge, this is the first report of an almond-infecting luteovirus.


Asunto(s)
Genoma Viral , Luteovirus/genética , Enfermedades de las Plantas/virología , Prunus dulcis/virología , Secuencia de Aminoácidos , Secuencia de Bases , Luteovirus/clasificación , Luteovirus/aislamiento & purificación , Sistemas de Lectura Abierta , Filogenia , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA