Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 30(4): 447-59, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18450493

RESUMEN

DAP5 is an eIF4G protein previously implicated in mediating cap-independent translation in response to cellular stresses. Here we report that DAP5 is crucial for continuous cell survival in nonstressed cells. The knockdown of endogenous DAP5 induced M phase-specific caspase-dependent apoptosis. Bcl-2 and CDK1 were identified by two independent screens as DAP5 translation targets. Notably, the activity of the Bcl-2 IRES was reduced in DAP5 knockdown cells and a selective shift of Bcl-2 mRNA toward light polysomal fractions was detected. Furthermore, a functional IRES was identified in the 5'UTR of CDK1. At the cellular level, attenuated translation of CDK1 by DAP5 knockdown decreased the phosphorylation of its M phase substrates. Ectopic expression of Bcl-2 or CDK1 proteins partially reduced the extent of caspase activation caused by DAP5 knockdown. Thus, DAP5 is necessary for maintaining cell survival during mitosis by promoting cap-independent translation of at least two prosurvival proteins.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Mitosis/fisiología , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regiones no Traducidas 5' , Animales , Apoptosis/fisiología , Proteína Quinasa CDC2/genética , Línea Celular , Supervivencia Celular , Factor 4G Eucariótico de Iniciación/genética , Humanos , Ratones , Factores de Iniciación de Péptidos , Polirribosomas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Interferencia de ARN
2.
Mol Cell Biol ; 24(19): 8611-26, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15367680

RESUMEN

The death-associated protein (DAP) kinase family includes three protein kinases, DAP kinase, DAP kinase-related protein 1, and ZIP kinase, which display 80% amino acid identity within their catalytic domains and are functionally linked to common subcellular changes occurring during cell death, such as the process of membrane blebbing. Here we show physical and functional cross talk between DAP kinase and ZIP kinase. The two kinases display strong synergistic effects on cell death when coexpressed and physically bind each other via their catalytic domains. Furthermore, DAP kinase phosphorylates ZIP kinase at six specific sites within its extracatalytic C-terminal domain. ZIP kinase localizes to both the nucleus and the cytoplasm and fractionates as monomeric and trimeric forms. Significantly, modification of the DAP kinase phosphorylation sites influences both the localization and oligomerization status of ZIP kinase. A mutant ZIP kinase construct, in which the six serine/threonine residues were mutated to aspartic acid to mimic the phosphorylated state, was found predominantly in the cytoplasm as a trimer and possessed greater cell death-inducing potency. This suggests that DAP kinase and ZIP kinase function in a biochemical pathway in which DAP kinase activates the cellular function of ZIP kinase through phosphorylation, leading to amplification of death-promoting signals.


Asunto(s)
Apoptosis/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteínas Quinasas Asociadas a Muerte Celular , Genes Reporteros , Células HeLa , Humanos , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transfección
3.
Cell Cycle ; 8(2): 204-9, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19158497

RESUMEN

Initiation of protein translation is tightly regulated by various physiological signals and involves cap-dependent and independent mechanisms. DAP5 protein is an eIF4G family member previously implicated in mediating cap-independent IRES driven translation in response to various cellular stresses. Unexpectedly, we have recently found that DAP5 is also essential for continuous cell survival in non-stressed cells. We reported in this respect that the knock down of endogenous DAP5 by RNA-interference induces M-phase specific caspase-dependent cell death. Bcl-2 and CDK1 were identified as DAP5 mRNA targets, the translation of which was selectively reduced in the DAP5 knock down cells. They each possess a functional IRES element in their 5'UTR. Here we review the major results of this study and present new data on the link of DAP5 to additional Bcl-2 family members. In addition we discuss other possible cellular phenotypes resulting from the knock down of DAP5 in these cells.


Asunto(s)
Factor 4G Eucariótico de Iniciación/metabolismo , Mitosis , Proteína Quinasa CDC2/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células HeLa , Humanos , Iniciación de la Cadena Peptídica Traduccional/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
4.
J Mol Biol ; 383(3): 539-48, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18722383

RESUMEN

DAP5/p97 (death-associated protein 5) is a member of the eukaryotic translation initiation factor 4G family. It functions as a scaffold protein promoting cap-independent translation of proteins. During apoptosis, DAP5/p97 is cleaved by caspases at position 792, yielding an 86-kDa C-terminal truncated isoform (DAP5/p86) that promotes translation of several mRNAs mediated by an internal ribosome entry site. In this study, we report the crystal structure of the C-terminal region of DAP5/p97 extending between amino acids 730 and 897. This structure consists of four HEAT-Repeats and is homologous to the C-terminal domain of eIF4GI, eIF5, and eIF2Bepsilon. Unlike the other proteins, DAP5/p97 lacks electron density in the loop connecting alpha3 and alpha4, which harbors the caspase cleavage site. Moreover, we observe fewer interactions between these two helices. Thus, previous mapping of this site by mutation analysis is confirmed here by the resolved structure of the DAP5/p97 C-terminus. In addition, we identified the position of two conserved aromatic and acidic boxes in the structure of the DAP5/p97 C-terminus. The acidic residues in the two aromatic and acidic boxes form a continuous negatively charged patch, which is suggested to make specific interactions with other proteins such as eIF2beta. The caspase cleavage of DAP5/p97 removes the subdomain carrying acidic residues in the AA-box motif, which may result in exposure of a hydrophobic surface. These intriguing structural differences between the two DAP5 isoforms suggest that they have different interaction partners and, subsequently, different functions.


Asunto(s)
Caspasas/metabolismo , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Factor 4G Eucariótico de Iniciación/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Electricidad Estática
5.
Proc Natl Acad Sci U S A ; 99(8): 5400-5, 2002 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-11943866

RESUMEN

Apoptosis is characterized by a translation switch from cap-dependent to internal ribosome entry site (IRES)-mediated protein translation. During apoptosis, several members of the eukaryotic initiation factor (eIF)4G family are cleaved specifically by caspases. Here we investigated which of the caspase-cleaved eIF4G family members could support cap-independent translation through IRES elements that retain activity in the dying cell. We focused on two major fragments arising from the cleavage of eIF4GI and death-associated protein 5 (DAP5) proteins (eIF4GI M-FAG/p76 and DAP5/p86, respectively), because they are the only potential candidates to preserve the minimal scaffold function needed to mediate translation. Transfection-based experiments in cell cultures indicated that expression of DAP5/p86 in cells stimulated protein translation from the IRESs of c-Myc, Apaf-1, DAP5, and XIAP. In contrast, these IRESs were refractory to the ectopically expressed eIF4GI M-FAG/p76. Furthermore, our study provides in vivo evidence that the caspase-mediated removal of the C-terminal tail of DAP5/p97 relieves an inhibitory effect on the protein's ability to support cap-independent translation through the DAP5 IRES. Altogether, the data suggest that DAP5 is a caspase-activated translation factor that mediates translation through a repertoire of IRES elements, supporting the translation of apoptosis-related proteins.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Factores de Iniciación de Péptidos/fisiología , Ribosomas/metabolismo , Línea Celular , Factor 4G Eucariótico de Iniciación , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Factores de Iniciación de Péptidos/metabolismo , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA