Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105548

RESUMEN

MPP+ is the active metabolite of MPTP, a molecule structurally similar to the herbicide Paraquat, known to injure the dopaminergic neurons of the nigrostriatal system in Parkinson's disease models. Within the cells, MPP+ accumulates in mitochondria where it inhibits complex I of the electron transport chain, resulting in ATP depletion and neuronal impairment/death. So far, MPP+ is recognized as a valuable tool to mimic dopaminergic degeneration in various cell lines. However, despite a large number of studies, a detailed characterization of mitochondrial respiration in neuronal cells upon MPP+ treatment is still missing. By using high-resolution respirometry, we deeply investigated oxygen consumption related to each respiratory state in differentiated neuroblastoma cells exposed to the neurotoxin. Our results indicated the presence of extended mitochondrial damage at the inner membrane level, supported by increased LEAK respiration, and a drastic drop in oxygen flow devoted to ADP phosphorylation in respirometry measurements. Furthermore, prior to complex I inhibition, an enhancement of complex II activity was observed, suggesting the occurrence of some compensatory effect. Overall our findings provide a mechanistic insight on the mitochondrial toxicity mediated by MPP+, relevant for the standardization of studies that employ this neurotoxin as a disease model.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedad de Parkinson/patología , 1-Metil-4-fenilpiridinio/toxicidad , Adenosina Difosfato/metabolismo , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Complejo III de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosforilación Oxidativa/efectos de los fármacos , Oxígeno/metabolismo , Respiración
2.
Stem Cells ; 36(8): 1179-1197, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29575325

RESUMEN

During aging-one the most potent risk factors for Parkinson's disease (PD)-both astrocytes and microglia undergo functional changes that ultimately hamper homoeostasis, defense, and repair of substantia nigra pars compacta (SNpc) midbrain dopaminergic (mDA) neurons. We tested the possibility of rejuvenating the host microenvironment and boosting SNpc DA neuronal plasticity via the unilateral transplantation of syngeneic neural stem/progenitor cells (NSCs) in the SNpc of aged mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental PD. Transplanted NSCs within the aged SNpc engrafted and migrated in large proportions to the tegmental aqueduct mDA niche, with 30% acquiring an astroglial phenotype. Both graft-derived exogenous (ex-Astro) and endogenous astrocytes (en-Astro) expressed Wnt1. Both ex-Astro and en-Astro were key triggers of Wnt/ß-catenin signaling in SNpc-mDA neurons and microglia, which was associated with mDA neurorescue and immunomodulation. At the aqueduct-ventral tegmental area level, NSC grafts recapitulated a genetic Wnt1-dependent mDA developmental program, inciting the acquisition of a mature Nurr1+ TH+ neuronal phenotype. Wnt/ß-catenin signaling antagonism abolished mDA neurorestoration and immune modulatory effects of NSC grafts. Our work implicates an unprecedented therapeutic potential for somatic NSC grafts in the restoration of mDA neuronal function in the aged Parkinsonian brain. Stem Cells 2018;36:1179-1197.


Asunto(s)
Envejecimiento/patología , Astrocitos/patología , Encéfalo/patología , Células-Madre Neurales/trasplante , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Vía de Señalización Wnt , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Astrocitos/metabolismo , Muerte Celular , Diferenciación Celular/genética , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación hacia Abajo/genética , Genes del Desarrollo , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Células-Madre Neurales/citología , Estrés Oxidativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sustancia Negra/patología , Sinaptosomas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Vía de Señalización Wnt/genética
3.
Int J Mol Sci ; 19(12)2018 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-30477246

RESUMEN

Wingless-type mouse mammary tumor virus (MMTV) integration site (Wnt) signaling is one of the most critical pathways in developing and adult tissues. In the brain, Wnt signaling contributes to different neurodevelopmental aspects ranging from differentiation to axonal extension, synapse formation, neurogenesis, and neuroprotection. Canonical Wnt signaling is mediated mainly by the multifunctional ß-catenin protein which is a potent co-activator of transcription factors such as lymphoid enhancer factor (LEF) and T-cell factor (TCF). Accumulating evidence points to dysregulation of Wnt/ß-catenin signaling in major neurodegenerative disorders. This review highlights a Wnt/ß-catenin/glial connection in Parkinson's disease (PD), the most common movement disorder characterized by the selective death of midbrain dopaminergic (mDAergic) neuronal cell bodies in the subtantia nigra pars compacta (SNpc) and gliosis. Major findings of the last decade document that Wnt/ß-catenin signaling in partnership with glial cells is critically involved in each step and at every level in the regulation of nigrostriatal DAergic neuronal health, protection, and regeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, focusing on Wnt/ß-catenin signaling to boost a full neurorestorative program in PD.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neurogénesis/genética , Trastornos Parkinsonianos/genética , Regeneración/genética , Transducción de Señal/genética , Proteínas Wnt/genética , beta Catenina/genética , Animales , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuroglía/metabolismo , Neuroglía/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/terapia , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
4.
Int J Mol Sci ; 18(12)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29236052

RESUMEN

Parkinson's disease (PD) is the most prevalent central nervous system (CNS) movement disorder and the second most common neurodegenerative disease overall. PD is characterized by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) within the midbrain, accumulation of alpha-synuclein (α-SYN) in Lewy bodies and neurites and excessive neuroinflammation. The neurodegenerative processes typically begin decades before the appearance of clinical symptoms. Therefore, the diagnosis is achievable only when the majority of the relevant DAergic neurons have already died and for that reason available treatments are only palliative at best. The causes and mechanism(s) of this devastating disease are ill-defined but complex interactions between genetic susceptibility and environmental factors are considered major contributors to the etiology of PD. In addition to the role of classical gene mutations in PD, the importance of regulatory elements modulating gene expression has been increasingly recognized. One example is the critical role played by microRNAs (miRNAs) in the development and homeostasis of distinct populations of neurons within the CNS and, in particular, in the context of PD. Recent reports demonstrate how distinct miRNAs are involved in the regulation of PD genes, whereas profiling approaches are unveiling variations in the abundance of certain miRNAs possibly relevant either to the onset or to the progression of the disease. In this review, we provide an overview of the miRNAs recently found to be implicated in PD etiology, with particular focus on their potential relevance as PD biomarkers, as well as their possible use in PD targeted therapy.


Asunto(s)
MicroARNs/metabolismo , Enfermedad de Parkinson/diagnóstico , Antagomirs/uso terapéutico , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Exosomas/metabolismo , Humanos , MicroARNs/análisis , MicroARNs/antagonistas & inhibidores , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Proteína Desglicasa DJ-1/antagonistas & inhibidores , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Stem Cells ; 32(8): 2147-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24648001

RESUMEN

Wnt/ß-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson's disease (PD), and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/ß-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor multipotent clonogenic neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/ß-catenin signaling. Coculture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal, and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic ß-catenin reporter mice uncovered Wnt/ß-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled ß-catenin signaling in predopaminergic (Nurr1(+)/TH(-)) and imperiled or rescuing DAT(+) neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas ß-catenin activation in situ with a specific GSK-3ß antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD.


Asunto(s)
Envejecimiento/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Enfermedad de Parkinson/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Western Blotting , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Inmunohistoquímica , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/metabolismo , Enfermedad de Parkinson/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Neurosci ; 33(4): 1462-85, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23345222

RESUMEN

Aging and exposure to environmental toxins including MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) are strong risk factors for developing Parkinson's disease (PD), a common neurologic disorder characterized by selective degeneration of midbrain dopaminergic (DAergic) neurons and astrogliosis. Aging and PD impair the subventricular zone (SVZ), one of the most important brain regions for adult neurogenesis. Because inflammation and oxidative stress are the hallmarks of aging and PD, we investigated the nature, timing, and signaling mechanisms contributing to aging-induced SVZ stem/neuroprogenitor cell (NPC) inhibition in aging male mice and attempted to determine to what extent manipulation of these pathways produces a functional response in the outcome of MPTP-induced DAergic toxicity. We herein reveal an imbalance of Nrf2-driven antioxidant/anti-inflammatory genes, such as Heme oxygenase1 in the SVZ niche, starting by middle age, amplified upon neurotoxin treatment and associated with an exacerbated proinflammatory SVZ microenvironment converging to dysregulate the Wingless-type MMTV integration site (Wnt)/ß-catenin signaling, a key regulatory pathway for adult NPCs. In vitro experiments using coculture paradigms uncovered aged microglial proinflammatory mediators as critical inhibitors of NPC proliferative potential. We also found that interruption of PI3K (phosphatidylinositol3-kinase)/Akt and the Wnt/Fzd/ß-catenin signaling cascades, which switch glycogen synthase kinase 3ß (GSK-3ß) activation on and off, were causally related to the impairment of SVZ-NPCs. Moreover, a synergy between dysfunctional microglia of aging mice and MPTP exposure further inhibited astrocyte proneurogenic properties, including the expression of key Wnts components. Last, pharmacological activation/antagonism studies in vivo and in vitro suggest the potential that aged SVZ manipulation is associated with DAergic functional recovery.


Asunto(s)
Envejecimiento/metabolismo , Mesencéfalo/metabolismo , Células-Madre Neurales/metabolismo , Trastornos Parkinsonianos/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Células Cultivadas , Técnicas de Cocultivo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Neuroglía/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
7.
J Neurosci ; 32(6): 2062-85, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22323720

RESUMEN

In Parkinson's disease (PD), neurogenesis is impaired in the subventricular zone (SVZ) of postmortem human PD brains, in primate nonhuman and rodent models of PD. The vital role of Wingless-type MMTV integration site (Wnt)/ß-catenin signaling in the modulation of neurogenesis, neuroprotection, and synaptic plasticity coupled to our recent findings uncovering an active role for inflammation and Wnt/ß-catenin signaling in MPTP-induced loss and repair of nigrostriatal dopaminergic (DAergic) neurons prompted us to study the impact of neuroinflammation and the Wnt/ß-catenin pathway in the response of SVZ neuroprogenitors (NPCs) in MPTP-treated mice. In vivo experiments, using bromodeoxyuridine and cell-specific markers, and ex vivo time course analyses documented an inverse correlation between the reduced proliferation of NPCs and the generation of new neuroblasts with the phase of maximal exacerbation of microglia reaction, whereas a shift in the microglia proinflammatory phenotype correlated with a progressive NPC recovery. Ex vivo and in vitro experiments using microglia-NPC coculture paradigms pointed to NADPH-oxidase (gpPHOX(91)), a major source of microglial ROS, and reactive nitrogen species as candidate inhibitors of NPC neurogenic potential via the activation of glycogen synthase 3 (pGSK-3ß(Tyr216)), leading to loss of ß-catenin, a chief downstream transcriptional effector. Accordingly, MPTP/MPP(+) (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) caused ß-catenin downregulation and pGSK-3ß(Tyr216) overexpression, whereas manipulation of Wnt/ß-catenin signaling with RNA interference-mediated GSK-3ß knockdown or GSK-3ß antagonism reversed MPTP-induced neurogenic impairment ex vivo/in vitro or in vivo. Reciprocally, pharmacological modulation of inflammation prevented ß-catenin downregulation and restored neurogenesis, suggesting the possibility to modulate this endogenous system with potential consequences for DAergic neuroprotection and self-repair.


Asunto(s)
Mediadores de Inflamación/administración & dosificación , Intoxicación por MPTP/metabolismo , Plasticidad Neuronal/fisiología , Enfermedad de Parkinson/metabolismo , Receptor Cross-Talk/fisiología , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/antagonistas & inhibidores , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Animales , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen/métodos , Mediadores de Inflamación/fisiología , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Receptor Cross-Talk/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/patología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
8.
Eur J Neurosci ; 37(10): 1550-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23461676

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neuronal cell bodies in the substantia nigra pars compacta and gliosis. The cause and mechanisms underlying the demise of nigrostriatal DAergic neurons are ill-defined, but interactions between genes and environmental factors are recognized to play a critical role in modulating the vulnerability to PD. Current evidence points to reactive glia as a pivotal factor in PD pathophysiology, playing both protective and destructive roles. Here, the contribution of reactive astrocytes and their ability to modulate DAergic neurodegeneration, neuroprotection and neurorepair in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD will be discussed in the light of novel emerging evidence implicating wingless-type mouse mammary tumor virus integration site (Wnt)/ß-catenin signaling as a strong candidate in MPTP-induced nigrostriatal DAergic plasticity. In this work, we highlight an intrinsic Wnt1/frizzled-1/ß-catenin tone that critically contributes to the survival and protection of adult midbrain DAergic neurons, with potential implications for drug design or drug action in PD. The dynamic interplay between astrocyte-derived factors and neurogenic signals in MPTP-induced nigrostriatal DAergic neurotoxicity and repair will be summarized, together with recent findings showing a critical role of glia-neural stem/progenitor cell (NPC) interactions aimed at overcoming neurodegeneration and inducing neurorestoration. Understanding the intrinsic plasticity of nigrostriatal DAergic neurons and deciphering the signals facilitating the crosstalk between astrocytes, microglia, DAergic neurons and NPCs may have major implications for the role of stem cell technology in PD, and for identifying potential therapeutic targets to induce endogenous neurorepair.


Asunto(s)
Astrocitos/metabolismo , Intoxicación por MPTP/metabolismo , Neuronas/metabolismo , Vía de Señalización Wnt , Animales , Intoxicación por MPTP/patología , Ratones
9.
Aging Cell ; 21(4): e13575, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35262262

RESUMEN

Dopamine (DA) signaling via G protein-coupled receptors is a multifunctional neurotransmitter and neuroendocrine-immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson's disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age-dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine-immune DA target, in turn, counter-modulating inflammatory processes. With a major focus on DA intersection within the astrocyte-microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene-environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/ß-catenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex "signaling puzzle," a novel actor in mDAn-glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Anciano , Humanos , Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuroglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Parkinson/metabolismo
10.
Adv Healthc Mater ; 11(20): e2201203, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35856921

RESUMEN

Extracellular vesicles (EVs) are emerging as powerful players in cell-to-cell communication both in healthy and diseased brain. In Parkinson's disease (PD)-characterized by selective dopaminergic neuron death in ventral midbrain (VMB) and degeneration of their terminals in striatum (STR)-astrocytes exert dual harmful/protective functions, with mechanisms not fully elucidated. Here, this study shows that astrocytes from the VMB-, STR-, and VMB/STR-depleted brains release a population of small EVs  in a region-specific manner. Interestingly, VMB-astrocytes secreted the highest rate of EVs, which is further exclusively increased in response to CCL3, a chemokine that promotes robust dopaminergic neuroprotection in different PD models. The neuroprotective potential of nigrostriatal astrocyte-EVs is investigated in differentiated versus undifferentiated SH-SY5Y cells exposed to oxidative stress and mitochondrial toxicity. EVs from both VMB- and STR-astrocytes counteract H2 O2 -induced caspase-3 activation specifically in differentiated cells, with EVs from CCL3-treated astrocytes showing a higher protective effect. High resolution respirometry further reveals that nigrostriatal astrocyte-EVs rescue neuronal mitochondrial complex I function impaired by the neurotoxin MPP+ . Notably, only EVs from VMB-astrocyte fully restore ATP production, again specifically in differentiated SH-SY5Y. These results highlight a regional diversity in the nigrostriatal system for the secretion and activities of astrocyte-EVs, with neuroprotective implications for PD.


Asunto(s)
Vesículas Extracelulares , Neuroblastoma , Enfermedad de Parkinson , Humanos , Astrocitos/metabolismo , Enfermedad de Parkinson/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/farmacología , Caspasa 3/metabolismo , Neuroblastoma/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mitocondrias , Muerte Celular , Vesículas Extracelulares/metabolismo , Dopamina/farmacología , Adenosina Trifosfato/metabolismo
11.
Aging Dis ; 12(6): 1494-1515, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34527424

RESUMEN

The elderly population will significantly increase in the next decade and, with it, the proportion of people affected by age-related diseases. Among them, one of the most invalidating is Parkinson's disease (PD), characterized by motor- and non-motor dysfunctions which strongly impair the quality of life of affected individuals. PD is characterized by the progressive degeneration of dopaminergic neurons, with consequent dopamine depletion, and the accumulation of misfolded α-synuclein aggregates. Although 150 years have passed since PD first description, no effective therapies are currently available, but only palliative treatments. Importantly, PD is often diagnosed when the neuronal loss is elevated, making difficult any therapeutic intervention. In this context, two key challenges remain unanswered: (i) the early diagnosis to avoid the insurgence of irreversible symptoms; and (ii) the reliable monitoring of therapy efficacy. Research strives to identify novel biomarkers for PD diagnosis, prognosis, and therapeutic follow-up. One of the most promising sources of biomarkers is represented by extracellular vesicles (EVs), a heterogeneous population of nanoparticles, released by all cells in the microenvironment. Brain-derived EVs are able to cross the blood-brain barrier, protecting their payload from enzymatic degradation, and are easily recovered from biofluids. Interestingly, EV content is strongly influenced by the specific pathophysiological status of the donor cell. In this manuscript, the role of EVs as source of novel PD biomarkers is discussed, providing all recent findings concerning relevant proteins and miRNAs carried by PD patient-derived EVs, from several biological specimens. Moreover, the contribution of mitochondria-derived EVs will be dissected. Finally, the promising possibility to use EVs as source of markers to monitor PD therapy efficacy will be also examined. In the future, larger cohort studies will help to validate these EV-associated candidates, that might be effectively used as non-invasive and robust source of biomarkers for PD.

12.
J Neuroinflammation ; 7: 83, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21092260

RESUMEN

BACKGROUND: Current evidence suggests a role of neuroinflammation in the pathogenesis of Parkinson's disease (PD) and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of basal ganglia injury. Reportedly, nonsteroidal anti-inflammatory drugs (NSAIDs) mitigate DAergic neurotoxicity in rodent models of PD. Consistent with these findings, epidemiological analysis indicated that certain NSAIDs may prevent or delay the progression of PD. However, a serious impediment of chronic NSAID therapy, particularly in the elderly, is gastric, renal and cardiac toxicity. Nitric oxide (NO)-donating NSAIDs, have a safer profile while maintaining anti-inflammatory activity of parent compounds. We have investigated the oral activity of the NO-donating derivative of flurbiprofen, [2-fluoro-α-methyl (1,1'-biphenyl)-4-acetic-4-(nitrooxy)butyl ester], HCT1026 (30 mg kg(-1) daily in rodent chow) in mice exposed to the parkinsonian neurotoxin MPTP. METHODS: Ageing mice were fed with a control, flurbiprofen, or HCT1026 diet starting ten days before MPTP administration and continuing for all the experimental period. Striatal high affinity synaptosomal dopamine up-take, motor coordination assessed with the rotarod, tyrosine hydroxylase (TH)- and dopamine transporter (DAT) fiber staining, stereological cell counts, immunoblotting and gene expression analyses were used to assess MPTP-induced nigrostriatal DAergic toxicity and glial activation 1-40 days post-MPTP. RESULTS: HCT1026 was well tolerated and did not cause any measurable toxic effect, whereas flurbiprofen fed mice showed severe gastrointestinal side-effects. HCT1026 efficiently counteracted motor impairment and reversed MPTP-induced decreased synaptosomal [3H]dopamine uptake, TH- and DAT-stained fibers in striatum and TH+ neuron loss in substantia nigra pars compacta (SNpc), as opposed to age-matched mice fed with a control diet. These effects were associated to a significant decrease in reactive macrophage antigen-1 (Mac-1)-positive microglial cells within the striatum and ventral midbrain, decreased expression of iNOS, Mac-1 and NADPH oxidase (PHOX), and downregulation of 3-Nitrotyrosine, a peroxynitrite finger print, in SNpc DAergic neurons. CONCLUSIONS: Oral treatment with HCT1026 has a safe profile and a significant efficacy in counteracting MPTP-induced dopaminergic (DAergic) neurotoxicity, motor impairment and microglia activation in ageing mice. HCT1026 provides a novel promising approach towards the development of effective pharmacological neuroprotective strategies against PD.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Antiinflamatorios no Esteroideos/inmunología , Antiinflamatorios no Esteroideos/uso terapéutico , Cuerpo Estriado/patología , Actividad Motora/efectos de los fármacos , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/patología , Animales , Antiinflamatorios no Esteroideos/farmacología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dopaminérgicos , Flurbiprofeno/administración & dosificación , Flurbiprofeno/análogos & derivados , Flurbiprofeno/inmunología , Flurbiprofeno/farmacología , Flurbiprofeno/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Intoxicación por MPTP , Antígeno de Macrófago-1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidorreductasas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Prueba de Desempeño de Rotación con Aceleración Constante , Sustancia Negra/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
13.
Redox Biol ; 36: 101664, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32863224

RESUMEN

Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/ß-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/ß-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/ß-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.


Asunto(s)
Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas , Ratones , Factor 2 Relacionado con NF-E2/genética , Neuroglía , Enfermedad de Parkinson/genética , Rejuvenecimiento
14.
Adv Healthc Mater ; 9(18): e2000731, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32864899

RESUMEN

Naturally occurring extracellular vesicles and artificially made vesicles represent important tools in nanomedicine for the efficient delivery of biomolecules and drugs. Since its first appearance in the literature 50 years ago, the research on vesicles is progressing at a fast pace, with the main goal of developing carriers able to protect cargoes from degradation, as well as to deliver them in a time- and space-controlled fashion. While natural occurring vesicles have the advantage of being fully compatible with their host, artificial vesicles can be easily synthetized and functionalized according to the target to reach. Research is striving to merge the advantages of natural and artificial vesicles, in order to provide a new generation of highly performing vesicles, which would improve the therapeutic index of transported molecules. This progress report summarizes current manufacturing techniques used to produce both natural and artificial vesicles, exploring the promises and pitfalls of the different production processes. Finally, pros and cons of natural versus artificial vesicles are discussed and compared, with special regard toward the current applications of both kinds of vesicles in the healthcare field.


Asunto(s)
Vesículas Extracelulares , Nanomedicina , Transporte Biológico , Portadores de Fármacos , Vesículas Extracelulares/metabolismo
15.
Front Aging Neurosci ; 12: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226376

RESUMEN

Astrocyte (As) bidirectional dialog with neurons plays a fundamental role in major homeostatic brain functions, particularly providing metabolic support and antioxidant self-defense against reactive oxygen (ROS) and nitrogen species (RNS) via the activation of NF-E2-related factor 2 (Nrf2), a master regulator of oxidative stress. Disruption of As-neuron crosstalk is chiefly involved in neuronal degeneration observed in Parkinson's disease (PD), the most common movement disorder characterized by the selective degeneration of dopaminergic (DAergic) cell bodies of the substantia nigra (SN) pars compacta (SNpc). Ventral midbrain (VM)-As are recognized to exert an important role in DAergic neuroprotection via the expression of a variety of factors, including wingless-related MMTV integration site 1 (Wnt1), a principal player in DAergic neurogenesis. However, whether As, by themselves, might fulfill the role of chief players in DAergic neurorestoration of aged PD mice is presently unresolved. Here, we used primary postnatal mouse VM-As as a graft source for unilateral transplantation above the SN of aged 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice after the onset of motor symptoms. Spatio-temporal analyses documented that the engrafted cells promoted: (i) a time-dependent nigrostriatal rescue along with increased high-affinity synaptosomal DA uptake and counteraction of motor deficit, as compared to mock-grafted counterparts; and (ii) a restoration of the impaired microenvironment via upregulation of As antioxidant self-defense through the activation of Nrf2/Wnt/ß-catenin signaling, suggesting that grafting As has the potential to switch the SN neurorescue-unfriendly environment to a beneficial antioxidant/anti-inflammatory prosurvival milieu. These findings highlight As-derived factors/mechanisms as the crucial key for successful therapeutic outcomes in PD.

16.
Aging Cell ; 19(3): e13101, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32050297

RESUMEN

A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/ß-catenin (WßC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WßC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WßC pathway is the cytosolic accumulation of ß-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WßC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WßC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WßC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.


Asunto(s)
Envejecimiento/metabolismo , Ventrículos Laterales/metabolismo , Neurogénesis , Enfermedad de Parkinson/metabolismo , Vía de Señalización Wnt , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Astrocitos/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Microglía/metabolismo , Células-Madre Neurales/metabolismo , Plasticidad Neuronal , Trastornos Parkinsonianos/metabolismo
17.
Biomolecules ; 10(9)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32948090

RESUMEN

Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor-ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson's disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood-brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.


Asunto(s)
Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Encéfalo/patología , Comunicación Celular/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Biológicos , Nanopartículas/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
18.
J Clin Med ; 9(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575923

RESUMEN

Glial cells are fundamental players in the central nervous system (CNS) development and homeostasis, both in health and disease states. In Parkinson's disease (PD), a dysfunctional glia-neuron crosstalk represents a common final pathway contributing to the chronic and progressive death of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc). Notably, glial cells communicating with each other by an array of molecules, can acquire a "beneficial" or "destructive" phenotype, thereby enhancing neuronal death/vulnerability and/or exerting critical neuroprotective and neuroreparative functions, with mechanisms that are actively investigated. An important way of delivering messenger molecules within this glia-neuron cross-talk consists in the secretion of extracellular vesicles (EVs). EVs are nano-sized membranous particles able to convey a wide range of molecular cargoes in a controlled way, depending on the specific donor cell and the microenvironmental milieu. Given the dual role of glia in PD, glia-derived EVs may deliver molecules carrying various messages for the vulnerable/dysfunctional DAergic neurons. Here, we summarize the state-of-the-art of glial-neuron interactions and glia-derived EVs in PD. Also, EVs have the ability to cross the blood brain barrier (BBB), thus acting both within the CNS and outside, in the periphery. In these regards, this review discloses the emerging applications of EVs, with a special focus on glia-derived EVs as potential carriers of new biomarkers and nanotherapeutics for PD.

19.
Brain Res Rev ; 57(2): 431-43, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18063054

RESUMEN

The final step in the physiological synthesis of 17beta estradiol (E(2)) is aromatization of precursor testosterone by a CYP19 gene product, cytochrome P450 estrogen aromatase in the C19 steroid metabolic pathway. Within the central nervous system (CNS) the presence, distribution, and activity of aromatase have been well characterized. Developmental stage and injury are known modulators of brain enzyme activity, where both neurons and glial cells reportedly have the capability to synthesize this key estrogenic enzyme. The gonadal steroid E(2) is a critical survival, neurotrophic and neuroprotective factor for dopaminergic neurons of the substantia nigra pars compacta (SNpc), the cells that degenerate in Parkinson's disease (PD). In previous studies we underlined a crucial role for the estrogenic status at the time of injury in dictating vulnerability to the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our ongoing studies address the contribution of brain aromatase and extragonadal E(2) as vulnerability factors for PD pathology in female brain, by exposing aromatase knockout (ArKO, -/-) female mice which are unable to synthesize estrogens to MPTP. Our initial results indicate that aromatase deficiency from early embryonic life significantly impairs the functional integrity of SNpc tyrosine hydroxylase-positive neurons and dopamine transporter innervation of the caudate-putamen in adulthood. In addition, ArKO females exhibited a far greater vulnerability to MPTP-induced nigrostriatal damage as compared to their Wt type gonadally intact and gonadectomized counterparts. Characterization of this novel implication of P450 aromatase as determining factor for PD vulnerability may unravel new avenues for the understanding and development of novel therapeutic approaches for Parkinson's disease.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Estradiol/metabolismo , Enfermedad de Parkinson/enzimología , Animales , Encéfalo/patología , Exposición a Riesgos Ambientales , Femenino , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Noqueados , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Factores de Riesgo
20.
Biochim Biophys Acta ; 1771(4): 522-32, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17344094

RESUMEN

In cell cultures of human lung fibroblasts, we found that oxidized LDL (oxLDL), after 24-h treatment, stimulated arachidonic acid release. A putative role for phospholipases A(2) and MAPK activities in this process was postulated. Consequently, we studied the contribution of either Ca(2+)-dependent, cytosolic phospholipase A(2) (cPLA(2)) or Ca(2+)-independent phospholipase A(2) (iPLA(2)), and the role of the MAP kinase family in oxLDL toxicity to fibroblastic cells in vitro. Activation of extracellular signal-regulated kinases ERK1/2, p38 and c-Jun NH(2)-terminal kinase (JNK) was also assessed with Western blotting. Compared with cellular samples untreated or treated with native LDL, treatment with oxLDL (50-100 microM hydroperoxides) for 24 h significantly increased the levels of either cPLA(2) protein expression or constitutively phosphorylated cPLA(2) protein; in addition we observed enzyme translocation to membranes. iPLA(2) activity was not stimulated by oxLDL. Arachidonic acid release appeared to be associated with phosphorylation of ERK1/2 which was significantly enhanced in a dose-dependent manner whereas no activation of p38 and JNKs was found, indicating that these MAPKs are not involved in mediating the maximal oxLDL response. Western blotting on subcellular fractions and confocal microscopy analyses confirmed an increase in 15-lipoxygenase (15-LO) protein expression and translocation upon activation. A significant increase of cyclooxygenase-2 expression into membrane fraction was also found. Collectively, the data presented link the stimulation of ERK-cPLA(2)-15-LO pathway by oxLDL to the prooxidant mechanism of the lipoprotein complex. It may initially stimulate the fibroblast reaction against the oxidation challenge as well as metabolic repair, such as during lung inflammation and pulmonary fibrosis.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Lipoproteínas LDL/farmacología , Pulmón/citología , Pulmón/enzimología , Fosfolipasas A/metabolismo , Ácido Araquidónico/metabolismo , Western Blotting , Muerte Celular/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fosfolipasas A2 Grupo IV , Humanos , Isoenzimas/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Pulmón/efectos de los fármacos , Microscopía Confocal , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfolipasas A2 , Fosforilación/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA