Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Exp Zool B Mol Dev Evol ; 328(1-2): 139-156, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27658924

RESUMEN

Eye development in insects is best understood in Drosophila melanogaster, but little is known for other holometabolous insects. Combining a morphological with a gene expression analysis, we investigated eye development in the honeybee, putting emphasis on the sex-specific differences in eye size. Optic lobe development starts from an optic lobe anlage in the larval brain, which sequentially gives rise to the lobula, medulla, and lamina. The lamina differentiates in the last larval instar, when it receives optic nerve projections from the developing retina. The expression analysis focused on seven genes important for Drosophila eye development: eyes absent, sine oculis, embryonic lethal abnormal vision, minibrain, small optic lobes, epidermal growth factor receptor, and roughest. All except small optic lobes were more highly expressed in third-instar drone larvae, but then, in the fourth and fifth instar, their expression was sex-specifically modulated, showing shifts in temporal dynamics. The clearest differences were seen for small optic lobes, which is highly expressed in the developing eye of workers, and minibrain and roughest, which showed a strong expression peak coinciding with retina differentiation. A microarray analysis for optic lobe/retina complexes revealed the differential expression of several metabolism-related genes, as well as of two micro-RNAs. While we could not see major morphological differences in the developing eye structures before the pupal stage, the expression differences observed for the seven candidate genes and in the transcriptional microarray profiles indicate that molecular signatures underlying sex-specific optic lobe and retina development become established throughout the larval stages.


Asunto(s)
Abejas/embriología , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Abejas/genética , Abejas/metabolismo , Ojo/anatomía & histología , Ojo/metabolismo , Femenino , Larva , Masculino , Pupa
2.
Anticancer Drugs ; 28(6): 634-644, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28410270

RESUMEN

Adrenocortical tumor (ACT) is a malignancy with a low incidence rate and the current therapy for advanced disease has a limited impact on overall patient survival. A previous study from our group suggested that elevated expression of aurora-A and aurora-B is associated with poor outcome in childhood ACT. Similar results were also reported for adult ACTs. The present in-vitro study shows that AMG 900 inhibits aurora kinases in adrenocortical carcinoma cells. AMG 900 inhibited cell proliferation in NCI-H295 cells as well as in the ACT primary cultures and caused apoptosis in the cell line NCI-H295. Furthermore, it potentialized the mitotane, doxorubicin, and etoposide effects on apoptosis induction and acted synergistically with mitotane and doxorubicin in the inhibition of proliferation. In addition, we found that AMG 900 activated Notch signaling and rendered the cells sensitive to the combination of AMG 900 and Notch signaling inhibition. Altogether, these data show that aurora kinases inhibition using AMG 900 may be an adjuvant therapy to treat patients with invasive or recurrent adrenocortical carcinomas.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Ftalazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias de la Corteza Suprarrenal/enzimología , Neoplasias de la Corteza Suprarrenal/patología , Carcinoma Corticosuprarrenal/enzimología , Carcinoma Corticosuprarrenal/patología , Aurora Quinasas/antagonistas & inhibidores , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacología , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Sinergismo Farmacológico , Histonas/metabolismo , Humanos , Mitotano/administración & dosificación , Mitotano/farmacología , Fosforilación/efectos de los fármacos , Ftalazinas/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación
3.
BMC Evol Biol ; 10: 273, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20825642

RESUMEN

BACKGROUND: During mating, insect males eject accessory gland proteins (Acps) into the female genital tract. These substances are known to affect female post-mating behavior and physiology. In addition, they may harm the female, e.g., in reducing its lifespan. This is interpreted as a consequence of sexual antagonistic co-evolution. Whereas sexual conflict abounds in non-social species, the peculiar life history of social insects (ants, bees, wasps) with lifelong pair-bonding and no re-mating aligns the reproductive interests of the sexes. Harming the female during mating would negatively affect male fitness and sexual antagonism is therefore not expected. Indeed, mating appears to increase female longevity in at least one ant species. Acps are presumed to play a role in this phenomenon, but the underlying mechanisms are unknown. In this study, we investigated genes, which are preferentially expressed in male accessory glands of the ant Leptothorax gredleri, to determine which proteins might be transferred in the seminal fluid. RESULTS: By a suppression subtractive hybridization protocol we obtained 20 unique sequences (USs). Twelve had mutual best matches with genes predicted for Apis mellifera and Nasonia vitripennis. Functional information (Gene Ontology) was available only for seven of these, including intracellular signaling, energy-dependent transport and metabolic enzyme activities. The remaining eight USs did not match sequences from other species. Six genes were further analyzed by quantitative RT-PCR in three life cycle stages of male ants. A gene with carboxy-lyase activity and one of unpredicted function were significantly overexpressed in accessory glands of sexually mature males. CONCLUSIONS: Our study is the first one to investigate differential gene expression in ants in a context related to mating. Our findings indicate that male accessory glands of L. gredleri express a series of genes that are unique to this species, possibly representing novel genes, in addition to conserved ones for which functions can be predicted. Identifying differentially expressed genes might help to better understand molecular mechanisms involved in reproductive processes in eusocial Hymenoptera. While the novel genes could account for rapidly evolving ones driven by intra-sexual conflict between males, conserved genes imply that rather beneficial traits might get fixed by a process described as inter-sexual cooperation between males and females.


Asunto(s)
Hormigas/genética , Hormigas/metabolismo , Glándulas Exocrinas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hibridación de Ácido Nucleico , Animales , Biología Computacional , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA