Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 72(4): 1267-1282, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31961955

RESUMEN

BACKGROUND AND AIMS: Despite the availability of new-generation drugs, hepatocellular carcinoma (HCC) is still the third most frequent cause of cancer-related deaths worldwide. Cerium oxide nanoparticles (CeO2 NPs) have emerged as an antioxidant agent in experimental liver disease because of their antioxidant, anti-inflammatory, and antisteatotic properties. In the present study, we aimed to elucidate the potential of CeO2 NPs as therapeutic agents in HCC. APPROACH AND RESULTS: HCC was induced in 110 Wistar rats by intraperitoneal administration of diethylnitrosamine for 16 weeks. Animals were treated with vehicle or CeO2 NPs at weeks 16 and 17. At the eighteenth week, nanoceria biodistribution was assessed by mass spectrometry (MS). The effect of CeO2 NPs on tumor progression and animal survival was investigated. Hepatic tissue MS-based phosphoproteomics as well as analysis of principal lipid components were performed. The intracellular uptake of CeO2 NPs by human ex vivo perfused livers and human hepatocytes was analyzed. Nanoceria was mainly accumulated in the liver, where it reduced macrophage infiltration and inflammatory gene expression. Nanoceria treatment increased liver apoptotic activity, while proliferation was attenuated. Phosphoproteomic analysis revealed that CeO2 NPs affected the phosphorylation of proteins mainly related to cell adhesion and RNA splicing. CeO2 NPs decreased phosphatidylcholine-derived arachidonic acid and reverted the HCC-induced increase of linoleic acid in several lipid components. Furthermore, CeO2 NPs reduced serum alpha-protein levels and improved the survival of HCC rats. Nanoceria uptake by ex vivo perfused human livers and in vitro human hepatocytes was also demonstrated. CONCLUSIONS: These data indicate that CeO2 NPs partially revert the cellular mechanisms involved in tumor progression and significantly increase survival in HCC rats, suggesting that they could be effective in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Cerio/uso terapéutico , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Nanopartículas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Cerio/farmacocinética , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/mortalidad , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , alfa-Fetoproteínas/análisis
2.
Cell Physiol Biochem ; 32(5): 1125-36, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24247107

RESUMEN

BACKGROUND: The molecular mechanisms by which myocardial ischemia translates into ventricular remodeling remain unclear. METHODS: We investigated whether hypoxia and proinflammatory cytokines are specific inducers of remodeling signals in an in vitro model of cultured adult human ventricular myocytes (AC16 cells). RESULTS: Hypoxia modified the ratio of matrix remodeling factors by increasing the aminoterminal propeptide of type III procollagen (PIIINP) and reducing tissue inhibitor of matrix metalloproteinase type 1 (TIMP-1) secretion in AC16 cells. These effects, however, were not associated with either modifications in expression of matrix metalloproteinase type 2, collagen-I or metalloproteinase activity. Hypoxia does, actually increase the production of the cardiac antifibrogenic growth factors, Apelin and VEGF, through an Hypoxia Inducible Factor type 1-dependent mechanism. Concerning proinflammatory signaling pathways, IL1ß emerged as a powerful inducer of matrix turnover, since it significantly enhanced PIIINP, TIMP-1 and hyaluronic acid production and increased metalloproteinase activity. In contrast, TNFα did not modify matrix turnover but markedly induced the production of Apelin and VEGF. CONCLUSION: Hypoxia and increased TNFα activity likely exert cardioprotective actions by activating the cardiac antifibrogenic factors Apelin and VEGF. In contrast, IL1ß is a strong promoter of interstitial collagen remodeling that may contribute to ventricular dilation and heart failure in the ischemic myocardium.


Asunto(s)
Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miocitos Cardíacos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Ventricular/fisiología , Apelina , Hipoxia de la Célula/fisiología , Células Cultivadas , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Interleucina-1beta/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Miocitos Cardíacos/patología , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
3.
J Steroid Biochem Mol Biol ; 152: 53-61, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25913395

RESUMEN

The presence of two cysteinyl progestogens, 16-cysteinyl-progesterone (16-Cys-Prog) and 16-cysteinyl-pregnenolone (16-Cys-Preg), in human urine is described for the first time. Their occurrence was unequivocally confirmed by comparison with synthesized material by using mass spectrometric detectors. Several experiments were performed in order to clarify their origin. The adrenal origin of both 16-Cys-Prog and 16-Cys-Preg can be inferred from the increase in their concentrations after ACTH stimulatory test, together with their circadian variation similar to the one observed for cortisol. Moreover, the notable increase in excretions of 16-Cys-Prog during the luteal phase of the menstrual cycle points towards an ovarian production for this progestogen. However, the analysis of samples during the course of two pregnancies revealed that, in spite of the large amounts of progesterone produced during gestation, the human placenta lacks the capacity to make 16-Cys-Prog. The adrenal and ovarian origin has been further indicated by the absence of both metabolites in samples collected from a subject with bilateral adrenalectomy and hypogonadotrophyic hypogonadism. Regarding liver action, in vitro studies with hepatocytes and progesterone indicate that, although the liver is able to metabolize progesterone to 6-dehydroprogesterone, it has not the enzymatic machinery for the generation of 16-dehydroprogesterone. Taken together, these results open the possibility for a noninvasive test for the simultaneous evaluation of progesterone biosynthesis in different organs.


Asunto(s)
Cisteína/análogos & derivados , Hígado/metabolismo , Ovario/metabolismo , Placenta/metabolismo , Pregnenolona/análogos & derivados , Progesterona/análogos & derivados , Progestinas/orina , Hormona Adrenocorticotrópica/farmacología , Adulto , Línea Celular Tumoral , Niño , Cisteína/orina , Femenino , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hidrocortisona/farmacología , Fase Luteínica , Masculino , Embarazo , Pregnenolona/orina , Progesterona/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA