Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(52): 32891-32901, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33323484

RESUMEN

Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant's hierarchical assembly, and establish a direct correlation between the protein's structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells' color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.

2.
Nat Mater ; 20(1): 93-99, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33106648

RESUMEN

Metal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges. Here, we demonstrate the resist-free, direct X-ray and electron-beam lithography of MOFs. This process avoids etching damage and contamination and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting high-quality patterns have excellent sub-50-nm resolution, and approach the mesopore regime. The compatibility of X-ray and electron-beam lithography with existing micro- and nanofabrication processes will facilitate the integration of MOFs in miniaturized devices.

3.
J Synchrotron Radiat ; 27(Pt 1): 51-59, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868736

RESUMEN

A new setup for picosecond pump-probe X-ray scattering at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste is presented. A high-power/high-repetion-rate laser has been installed on-site, delivering UV/VIS/IR femtosecond-pulses in-sync with the storage ring. Data acquisition is achieved by gating a multi-panel detector, capable of discriminating the single X-ray pulse in the dark-gap of the Elettra hybrid filling mode. Specific aspects of laser- and detection-synchronization, on-line beam steering as well protocols for spatial and temporal overlap of laser and X-ray beam are also described. The capabilities of the setup are demonstrated by studying transient heat-transfer in an In/Al/GaAs superlattice structure and results are confirmed by theoretical calculations.

4.
Chemphyschem ; 18(10): 1220-1223, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28295928

RESUMEN

Encapsulating reacting biological or chemical samples in microfluidic droplets has the great advantage over single-phase flows of providing separate reaction compartments. These compartments can be filled in a combinatoric way and prevent the sample from adsorbing to the channel walls. In recent years, small-angle X-ray scattering (SAXS) in combination with microfluidics has evolved as a nanoscale method of such systems. Here, we approach two major challenges associated with combining droplet microfluidics and SAXS. First, we present a simple, versatile, and reliable device, which is both suitable for stable droplet formation and compatible with in situ X-ray measurements. Second, we solve the problem of "diluting" the sample signal by the signal from the oil separating the emulsion droplets by multiple fast acquisitions per droplet and data thresholding. We show that using our method, even the weakly scattering protein vimentin provides high signal-to-noise ratio data.


Asunto(s)
Técnicas Analíticas Microfluídicas , Proteínas/química , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Difracción de Rayos X
5.
J Synchrotron Radiat ; 23(1): 267-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26698073

RESUMEN

Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness.

6.
J Synchrotron Radiat ; 22(1): 165-71, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25537604

RESUMEN

An innovative approach towards the physico-chemical tailoring of zinc oxide thin films is reported. The films have been deposited by liquid phase using the sol-gel method and then exposed to hard X-rays, provided by a synchrotron storage ring, for lithography. The use of surfactant and chelating agents in the sol allows easy-to-pattern films made by an organic-inorganic matrix to be deposited. The exposure to hard X-rays strongly affects the nucleation and growth of crystalline ZnO, triggering the formation of two intermediate phases before obtaining a wurtzite-like structure. At the same time, X-ray lithography allows for a fast patterning of the coatings enabling microfabrication for sensing and arrays technology.

7.
J Synchrotron Radiat ; 21(Pt 1): 193-202, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24365936

RESUMEN

Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.

8.
Sci Rep ; 14(1): 28, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168597

RESUMEN

3D imaging provides crucial details about the objects and scenes that may not be obtained via 2D imaging methods. However, there are several applications in which the object to be 3D-imaged requires to be immobilized. The integrated digital holographic microscopy (DHM) and optical trapping (OT) system is a useful solution for such a task, but both DHM and OT are mostly suitable for microscopic specimens. Here, for the first time to the best of our knowledge and as an analogy to the DHM-OT system, we introduce integral imaging (InIm) and acoustic trapping (AT) integrated system for 3D imaging of immobilized mesoscopic and macroscopic objects. Post-processing of InIm data enables reconstructing the scene at any arbitrary plane, therefore, it re-focuses any particular depth of the object, which is a curtail task, especially when the object is trapped by AT. We demonstrate the capability of our system by simultaneous trapping and 3D imaging of single and multiple irregularly shaped objects with mm sizes.

9.
Adv Mater ; : e2404384, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943469

RESUMEN

Films and patterns of 3D-oriented metal-organic frameworks (MOFs) afford well-ordered pore structures extending across centimeter-scale areas. These macroscopic domains of aligned pores are pivotal to enhance diffusion along specific pathways and orient functional guests. The anisotropic properties emerging from this alignment are beneficial for applications in ion conductivity and photonics. However, the structure of 3D-oriented MOF films and patterns can rapidly degrade under humid and acidic conditions. Thus, more durable 3D-ordered porous systems are desired for practical applications. Here, oriented porous polymer films and patterns are prepared by using heteroepitaxially oriented N3-functionalized MOF films as precursor materials. The film fabrication protocol utilizes an azide-alkyne cycloaddition on the Cu2(AzBPDC)2DABCO MOF. The micropatterning protocol exploits the X-ray sensitivity of azide groups in Cu2(AzBPDC)2DABCO, enabling selective degradation in the irradiated areas. The masked regions of the MOF film retain their N3-functionality, allowing for subsequent cross-linking through azide-alkyne coupling. Subsequent acidic treatment removes the Cu ions from the MOF, yielding porous polymer micro-patterns. The polymer has high chemical stability and shows an anisotropic fluorescent response. The use of 3D-oriented MOF systems as precursors for the fabrication of oriented porous polymers will facilitate the progress of optical components for photonic applications. This article is protected by copyright. All rights reserved.

10.
Small ; 9(13): 2277-82, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23447493

RESUMEN

Microchannels are fabricated using a photosensitive polymer to which microporosity is tuned with different X-ray doses. Using hard X-ray irradiation, the micropattern is positioned with various geometries in a multi-level, three-dimensional structure, while controlling the pore size and transport properties of small molecules. This highly reliable fabrication process has potential for use in microfluidic devices with enhanced transport properties through microchannels.

11.
Int J Surg ; 109(10): 2934-2940, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37352522

RESUMEN

BACKGROUND: Poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is mainly due to the lack of effective early-stage detection strategies. Even though the link between inflammation and PDAC has been demonstrated and inflammatory biomarkers proved their efficacy in predicting several tumours, to date they have a role only in assessing PDAC prognosis. Recently, the studies of interactions between nanosystems and easily collectable biological fluids, alone or coupled with standard laboratory tests, have proven useful in facilitating PDAC diagnosis. Notably, tests based on magnetic levitation (MagLev) of biocoronated nanosystems have demonstrated high diagnostic accuracy in compliance with the criteria stated by WHO. Herein, the author developed a synergistic analysis that combines a user-friendly MagLev-based approach and common inflammatory biomarkers for discriminating PDAC subjects from healthy ones. MATERIALS AND METHODS: Plasma samples from 24 PDAC subjects and 22 non-oncological patients have been collected and let to interact with graphene oxide nanosheets.Biomolecular corona formed around graphene oxide nanosheets have been immersed in a Maglev platform to study the levitation profiles.Inflammatory biomarkers such as neutrophil-to-lymphocyte ratio (NLR), derived-NLR (dNLR), and platelet to lymphocyte ratio have been calculated and combined with results obtained by the MagLev platform. RESULTS: MagLev profiles resulted significantly different between non-oncological patients and PDAC and allowed to identify a MagLev fingerprint for PDAC. Four inflammatory markers were significantly higher in PDAC subjects: neutrophils ( P =0.04), NLR ( P =4.7 ×10 -6 ), dNLR ( P =2.7 ×10 -5 ), and platelet to lymphocyte ratio ( P =0.002). Lymphocytes were appreciably lower in PDACs ( P =2.6 ×10 -6 ).Combining the MagLev fingerprint with dNLR and NLR returned global discrimination accuracy for PDAC of 95.7% and 91.3%, respectively. CONCLUSIONS: The multiplexed approach discriminated PDAC patients from healthy volunteers in up to 95% of cases. If further confirmed in larger-cohort studies, this approach may be used for PDAC detection.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Detección Precoz del Cáncer , Neoplasias Pancreáticas/patología , Biomarcadores , Linfocitos/patología , Carcinoma Ductal Pancreático/patología , Pronóstico , Neutrófilos/patología , Biomarcadores de Tumor , Estudios Retrospectivos , Neoplasias Pancreáticas
12.
ACS Biomater Sci Eng ; 9(2): 978-990, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36692450

RESUMEN

The fascination with the optical properties of naturally occurring systems has been driven in part by nature's ability to produce a diverse palette of vibrant colors from a relatively small number of common structural motifs. Within this context, some cephalopod species have evolved skin cells called iridophores and leucophores whose constituent ultrastructures reflect light in different ways but are composed of the same high refractive index material─a protein called reflectin. Although such natural optical systems have attracted much research interest, measuring the refractive indices of biomaterial-based structures across multiple different environments and establishing theoretical frameworks for accurately describing the obtained refractive index values has proven challenging. Herein, we employ a synergistic combination of experimental and computational methodologies to systematically map the three-dimensional refractive index distributions of model self-assembled reflectin-based structures both in vivo and in vitro. When considered together, our findings may improve understanding of squid skin cell functionality, augment existing methods for characterizing protein-based optical materials, and expand the utility of emerging holotomographic microscopy techniques.


Asunto(s)
Decapodiformes , Nanoestructuras , Animales , Decapodiformes/química , Refractometría , Proteínas/química , Materiales Biocompatibles
13.
J Appl Crystallogr ; 56(Pt 4): 961-966, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555215

RESUMEN

Understanding and control of thermal transport in solids at the nanoscale are crucial in engineering and enhance the properties of a new generation of optoelectronic, thermoelectric and photonic devices. In this regard, semiconductor superlattice structures provide a unique platform to study phenomena associated with phonon propagations in solids such as heat conduction. Transient X-ray diffraction can directly probe atomic motions and therefore is among the rare techniques sensitive to phonon dynamics in condensed matter. Here, optically induced transient heat conduction in GaAs/AlAs superlattice structures is studied using the EIGER2 detector. Benchmark experiments have been performed at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste operated in the hybrid filling mode. This work demonstrates that drifts of experimental conditions, such as synchrotron beam fluctuations, become less essential when utilizing the EIGER2 double-gating mode which results in a faster acquisition of high-quality data and facilitates data analysis and data interpretation.

14.
Adv Mater ; 35(25): e2211478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36934320

RESUMEN

Micropatterning crystalline materials with oriented pores is necessary for the fabrication of devices with anisotropic properties. Crystalline and porous metal-organic frameworks (MOFs) are ideal materials as their chemical and structural mutability enables precise tuning of functional properties for applications ranging from microelectronics to photonics. Herein, a patternable oriented MOF film is designed: by using a photomask under X-ray exposure, the MOF film decomposes in the irradiated areas, remaining intact in the unexposed regions. The MOF film acts simultaneously as a resist and as functional porous material. While the heteroepitaxial growth from aligned Cu(OH)2 nanobelts is used to deposit oriented MOF films, the sensitivity to radiation is achieved by integrating a brominated dicarboxylate ligand (Br2 BDC) into a copper-based MOF Cu2 L2 DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane; L = BDC/Br2 BDC). The lithographed samples act as diffraction gratings upon irradiation with a laser, thus confirming the quality of the extended MOF micropattern. Furthermore, the oriented MOF patterns are functionalized with fluorescent dyes. As a result, by rotating the polarization angle of the laser excitation, the alignment of the dye in the MOF is demonstrated. By controlling the functional response to light, this MOF patterning protocol can be used for the microfabrication of optical components for photonic devices.

15.
Pharmaceutics ; 14(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36559196

RESUMEN

Thanks to specific physico-chemical properties, drug delivery systems based on nanoparticles have proven to effectively transport delicate molecules for therapeutic purposes, protecting them from degradation, increasing their stability in the blood circulation and allowing to convey and release the transported substances in specific areas of the body. Nanoparticles obtained from biopolymers for applications in medicine and pharmaceutics have become particularly popular in recent years due to the enormous research effort in the field of vaccines to respond to the pandemic emergency. Among the various types of biopolymers used to produce nanoparticles for therapeutics, lipids have characteristics that make them biocompatible, with low toxicity and ease of clearance. They can be synthesized by designing their characteristics according to the foreseen administration path, or to the target of the transported drug. The analytical methods mostly used to evaluate the characteristics of lipid nanosytems for drug delivery involve studying their effects on cells, in vitro and in vivo. Although it is often considered a "niche technique" for research in the bio-related sciences, Small Angle X-ray Scattering (SAXS) is a versatile tool to study the structure of nanosystems based on lipids, both ex situ and in situ. Therefore, it allows to evaluate both the effect of the different synthesis parameters and of the exposure of lipid nanoparticles to physiological conditions, which is of fundamental importance to design efficient drug delivery systems. In this mini-review, we will report some recent examples of characterization and design of nanoparticles based on lipids, where SAXS has been a fundamental step both to guide the synthesis of nanomaterials with tailored characteristics, and to understand the interaction between nanomaterials and cells.

16.
Nanoscale ; 14(5): 1706-1712, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35043816

RESUMEN

Noble metal coordination xerogel films (mesostructured with block-copolymers) exhibit solubility switching with increasing X-ray irradiation. Different from other sol-gel systems, these are attributed to film deconstruction under irradiation. These materials can be used as recyclable negative tone resists for deep X-ray lithography that can be further converted into metallic nanoarchitectured films.

17.
Chem Sci ; 13(40): 11869-11877, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36320901

RESUMEN

Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.

18.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889600

RESUMEN

Magnetic levitation (MagLev) has recently emerged as a powerful method to develop diagnostic technologies based on the exploitation of the nanoparticle (NP)-protein corona. However, experimental procedures improving the robustness, reproducibility, and accuracy of this technology are largely unexplored. To contribute to filling this gap, here, we investigated the effect of total flow rate (TFR) and flow rate ratio (FRR) on the MagLev patterns of microfluidic-generated graphene oxide (GO)-protein complexes using bulk mixing of GO and human plasma (HP) as a reference. Levitating and precipitating fractions of GO-HP samples were characterized in terms of atomic force microscopy (AFM), bicinchoninic acid assay (BCA), and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE), and nanoliquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). We identified combinations of TFR and FRR (e.g., TFR = 35 µL/min and FRR (GO:HP) = 9:1 or TFR = 3.5 µL/min and FRR (GO:HP) = 19:1), leading to MagLev patterns dominated by levitating and precipitating fractions with bulk-like features. Since a typical MagLev experiment for disease detection is based on a sequence of optimization, exploration, and validation steps, this implies that the optimization (e.g., searching for optimal NP:HP ratios) and exploration (e.g., searching for MagLev signatures) steps can be performed using samples generated by bulk mixing. When these steps are completed, the validation step, which involves using human specimens that are often available in limited amounts, can be made by highly reproducible microfluidic mixing without any ex novo optimization process. The relevance of developing diagnostic technologies based on MagLev of coronated nanomaterials is also discussed.

19.
Anal Chem ; 83(12): 4863-70, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21542583

RESUMEN

Investigations of single fragile objects manipulated by optical forces with high brilliance X-ray beams may initiate the development of new research fields such as protein crystallography in an aqueous environment. We have developed a dedicated optical tweezers setup with a compact, portable, and versatile geometry for the customary manipulation of objects for synchrotron radiation applications. Objects of a few micrometers up to a few tens of micrometers size can be trapped for extended periods of time. The selection and positioning of single objects out of a batch of many can be performed semi-automatically by software routines. The performance of the setup has been tested by wide-angle and small-angle X-ray scattering experiments on single optically trapped starch granules, using a synchrotron radiation microbeam. We demonstrate here for the first time the feasibility of microdiffraction on optically trapped protein crystals. Starch granules and insulin crystals were repeatedly raster-scanned at about 50 ms exposure/raster-point up to the complete loss of the structural order. Radiation damage in starch granules results in the appearance of low-angle scattering due to the breakdown of the polysaccharide matrix. For insulin crystals, order along the densely packed [110] direction is preferentially maintained until complete loss of long-range order.


Asunto(s)
Pinzas Ópticas , Agua/química , Cristalización , Insulina/química , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Solanum tuberosum/metabolismo , Almidón/química , Sincrotrones , Difracción de Rayos X/métodos
20.
J Synchrotron Radiat ; 18(Pt 2): 280-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21335917

RESUMEN

In this article the effects induced by exposure of sol-gel thin films to hard X-rays have been studied. Thin films of silica and hybrid organic-inorganic silica have been prepared via dip-coating and the materials were exposed immediately after preparation to an intense source of light of several keV generated by a synchrotron source. The samples were exposed to increasing doses and the effects of the radiation have been evaluated by Fourier transform infrared spectroscopy, spectroscopic ellipsometry and atomic force microscopy. The X-ray beam induces a significant densification on the silica films without producing any degradation such as cracks, flaws or delamination at the interface. The densification is accompanied by a decrease in thickness and an increase in refractive index both in the pure silica and in the hybrid films. The effect on the hybrid material is to induce densification through reaction of silanol groups but also removal of the organic groups, which are covalently bonded to silicon via Si-C bonds. At the highest exposure dose the removal of the organic groups is complete and the film becomes pure silica. Hard X-rays can be used as an efficient and direct writing tool to pattern coating layers of different types of compositions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA