Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38247051

RESUMEN

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Consenso , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cabeza , Imagen por Resonancia Magnética/métodos , Algoritmos , Mapeo Encefálico/métodos
2.
Brain ; 146(11): 4659-4673, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37366338

RESUMEN

The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (ß = -0.30, Pcorrected < 0.001), lower R1 (ß = -0.26, Pcorrected = 0.001), lower R2* (ß = -0.32, Pcorrected < 0.001) and lower susceptibility values (ß = -0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (ß = 0.20, Pcorrected = 0.030), lower R1 values (ß = 0.20, Pcorrected = 0.006), lower R2* values (ß = 0.29, Pcorrected = 0.006) and lower susceptibility values (ß = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Trastornos del Conocimiento , Enfermedades Desmielinizantes , Sustancia Blanca , Humanos , Adelgazamiento de la Corteza Cerebral , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Enfermedades Desmielinizantes/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
3.
Stroke ; 54(5): 1367-1376, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912138

RESUMEN

BACKGROUND: Structural network damage is a potentially important mechanism by which cerebral small vessel disease (SVD) can cause cognitive impairment. As a central hub of the structural network, the role of thalamus in SVD-related cognitive impairments remains unclear. We aimed to determine the associations between the structural alterations of thalamic subregions and cognitive impairments in SVD. METHODS: In this cross-sectional study, 205 SVD participants without thalamic lacunes from the third follow-up (2020) of the prospective RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort), which was initiated in 2006, Nijmegen, were included. Cognitive functions included processing speed, executive function, and memory. Probabilistic tractography was performed from thalamus to 6 cortical regions, followed by connectivity-based thalamic segmentation to assess each thalamic subregion volume and connectivity (measured by mean diffusivity [MD] of the connecting white matter tracts) with the cortex. Least absolute shrinkage and selection operator regression analysis was conducted to identify the volumes or connectivity of the total thalamus and 6 thalamic subregions that have the strongest association with cognitive performance. Linear regression and mediation analyses were performed to test the association of least absolute shrinkage and selection operator-selected thalamic subregion volume or MD with cognitive performance, while adjusting for age and education. RESULTS: We found that higher MD of the thalamic-motor tract was associated with worse processing speed (ß=-0.27; P<0.001), higher MD of the thalamic-frontal tract was associated with worse executive function (ß=-0.24; P=0.001), and memory (ß=-0.28; P<0.001), respectively. The mediation analysis showed that MD of thalamocortical tracts mediated the association between corresponding thalamic subregion volumes and the cognitive performances in 3 domains. CONCLUSIONS: Our results suggest that the structural alterations of thalamus are linked to cognitive impairment in SVD, largely depending on the damage pattern of the white matter tracts connecting specific thalamic subregions and cortical regions.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Estudios Prospectivos , Estudios Transversales , Imagen por Resonancia Magnética , Tálamo/patología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones
4.
Neuroimage ; 266: 119824, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539169

RESUMEN

In this study, we optimized the variable flip angle (VFA) acquisition scheme using numerical simulations to shorten the acquisition time of multicompartment relaxometry for myelin water imaging (MCR-MWI) to a clinically practical range in the absence of advanced image reconstruction methods. As the primary objective of this study, the test-retest repeatability of myelin water fraction (MWF) measurements of MCR-MWI is evaluated on three gradient echo (GRE) sequence settings using the optimized VFA schemes with different echo times and repetition times, emulating various scanner setups. The cross-protocol reproducibility of MCR-MWI and MCR with diffusion-informed myelin water imaging (MCR-DIMWI) is also examined. As a secondary objective, we explore the bundle-specific profiles of various microstructural parameters from MCR-(DI)MWI and their cross-correlations to determine if these parameters possess supplementary microstructure information beyond myelin concentration. Numerical simulations indicate that MCR-MWI can be performed with a minimum of three flip angles covering a wide range of T1 weightings without adding significant bias. This is supported by the results of an in vivo experiment, allowing whole-brain 1.5 mm isotropic MWF maps to be acquired in 9 min, reducing the total scan time to 40% of the original implementation without significant quality degradation. Good test-retest repeatability is observed for MCR-MWI for all three GRE protocols. While good correlations can also be found in MWF across protocols, systematic differences are observed. Bundle-specific MWF analysis reveals that certain white matter bundles are similar in all participants. We also found that microstructure relaxation parameters have low linear correlations with MWF. MCR-MWI is a reproducible measure of myelin. However, attention should be paid to the protocol related MWF differences when comparing different studies, as the MWF bias up to 0.5% can be observed across the protocols examined in this work.


Asunto(s)
Vaina de Mielina , Agua , Humanos , Vaina de Mielina/metabolismo , Agua/análisis , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
5.
Hum Brain Mapp ; 44(1): 82-93, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196782

RESUMEN

A multiband (MB) echo-planar imaging (EPI) sequence is compared to a multiband multiecho (MBME) EPI protocol to investigate differences in sensitivity for task functional magnetic resonance imaging (fMRI) at 3 T. Multiecho sampling improves sensitivity in areas where single-echo-EPI suffers from dropouts. However, It requires in-plane acceleration to reduce the echo train length, limiting the slice acceleration factor and the temporal and spatial resolution Data were acquired for both protocols in two sessions 24 h apart using an adapted color-word interference Stroop task. Besides protocol comparison statistically, we performed test-retest reliability across sessions for different protocols and denoising methods. We evaluated the sensitivity of two different echo-combination strategies for MBME-EPI. We examined the performance of three different data denoising approaches: "Standard," "AROMA," and "FIX" for MB and MBME, and assessed whether a specific method is preferable. We consider using an appropriate autoregressive model order within the general linear model framework to correct TR differences between the protocols. The comparison between protocols and denoising methods showed at group level significantly higher mean z-scores and the number of active voxels for MBME in the motor, subcortical and medial frontal cortices. When comparing different echo combinations, our results suggest that a contrast-to-noise ratio weighted echo combination improves sensitivity in MBME compared to simple echo-summation. This study indicates that MBME can be a preferred protocol in task fMRI at spatial resolution (≥2 mm), primarily in medial prefrontal and subcortical areas.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Humanos , Imagen Eco-Planar/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos
6.
Magn Reson Med ; 90(4): 1682-1694, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345725

RESUMEN

In March 2022, the first ISMRM Workshop on Low-Field MRI was held virtually. The goals of this workshop were to discuss recent low field MRI technology including hardware and software developments, novel methodology, new contrast mechanisms, as well as the clinical translation and dissemination of these systems. The virtual Workshop was attended by 368 registrants from 24 countries, and included 34 invited talks, 100 abstract presentations, 2 panel discussions, and 2 live scanner demonstrations. Here, we report on the scientific content of the Workshop and identify the key themes that emerged. The subject matter of the Workshop reflected the ongoing developments of low-field MRI as an accessible imaging modality that may expand the usage of MRI through cost reduction, portability, and ease of installation. Many talks in this Workshop addressed the use of computational power, efficient acquisitions, and contemporary hardware to overcome the SNR limitations associated with low field strength. Participants discussed the selection of appropriate clinical applications that leverage the unique capabilities of low-field MRI within traditional radiology practices, other point-of-care settings, and the broader community. The notion of "image quality" versus "information content" was also discussed, as images from low-field portable systems that are purpose-built for clinical decision-making may not replicate the current standard of clinical imaging. Speakers also described technical challenges and infrastructure challenges related to portability and widespread dissemination, and speculated about future directions for the field to improve the technology and establish clinical value.


Asunto(s)
Imagen por Resonancia Magnética , Radiología , Humanos , Imagen por Resonancia Magnética/métodos , Programas Informáticos
7.
NMR Biomed ; 36(7): e4905, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36637237

RESUMEN

The acquisition of intravoxel incoherent motion (IVIM) data and diffusion tensor imaging (DTI) data from the brain can be integrated into a single measurement, which offers the possibility to determine orientation-dependent (tensorial) perfusion parameters in addition to established IVIM and DTI parameters. The purpose of this study was to evaluate the feasibility of such a protocol with a clinically feasible scan time below 6 min and to use a model-selection approach to find a set of DTI and IVIM tensor parameters that most adequately describes the acquired data. Diffusion-weighted images of the brain were acquired at 3 T in 20 elderly participants with cerebral small vessel disease using a multiband echoplanar imaging sequence with 15 b-values between 0 and 1000 s/mm2 and six non-collinear diffusion gradient directions for each b-value. Seven different IVIM-diffusion models with 4 to 14 parameters were implemented, which modeled diffusion and pseudo-diffusion as scalar or tensor quantities. The models were compared with respect to their fitting performance based on the goodness of fit (sum of squared fit residuals, chi2 ) and their Akaike weights (calculated from the corrected Akaike information criterion). Lowest chi2 values were found using the model with the largest number of model parameters. However, significantly highest Akaike weights indicating the most appropriate models for the acquired data were found with a nine-parameter IVIM-DTI model (with isotropic perfusion modeling) in normal-appearing white matter (NAWM), and with an 11-parameter model (IVIM-DTI with additional pseudo-diffusion anisotropy) in white matter with hyperintensities (WMH) and in gray matter (GM). The latter model allowed for the additional calculation of the fractional anisotropy of the pseudo-diffusion tensor (with a median value of 0.45 in NAWM, 0.23 in WMH, and 0.36 in GM), which is not accessible with the usually performed IVIM acquisitions based on three orthogonal diffusion-gradient directions.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Anciano , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Perfusión , Movimiento (Física)
8.
Magn Reson Med ; 88(1): 380-390, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344591

RESUMEN

PURPOSE: Ex vivo imaging is a commonly used approach to investigate the biophysical mechanism of orientation-dependent signal phase evolution in white matter. Yet, how phase measurements are influenced by the structural alteration in the tissue after formalin fixation is not fully understood. Here, we study the effects on magnetic susceptibility, microstructural compartmentalization, and chemical exchange measurement with a postmortem formalin-fixed whole-brain human tissue. METHODS: A formalin-fixed, postmortem human brain specimen was scanned with multiple orientations to the main magnetic field direction for robust bulk magnetic susceptibility measurement with conventional quantitative susceptibility imaging models. White matter samples were subsequently excised from the whole-brain specimen and scanned in multiple rotations on an MRI scanner to measure the anisotropic magnetic susceptibility and microstructure-related contributions in the signal phase and to validate the findings of the whole-brain data. RESULTS: The bulk isotropic magnetic susceptibility of ex vivo whole-brain imaging is comparable to in vivo imaging, with noticeable enhanced nonsusceptibility contributions. The excised specimen experiment reveals that anisotropic magnetic susceptibility and compartmentalization phase effect were considerably reduced in the formalin-fixed white matter specimens. CONCLUSIONS: Formalin-fixed postmortem white matter exhibits comparable isotropic magnetic susceptibility to previous in vivo imaging findings. However, the measured phase and magnitude data of the fixed white matter tissue shows a significantly weaker orientation dependency and compartmentalization effect. Alternatives to formalin fixation are needed to better reproduce the in vivo microstructural effects in postmortem samples.


Asunto(s)
Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Formaldehído , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen
9.
Zoo Biol ; 41(6): 560-575, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35137968

RESUMEN

In this paper, we cover 4 years of live fish transports that ranged from 14 to 200 h (8 days), and bioloads from 3.8 to 76.9 kg/m3 . The key ingredients for success in all trips, where virtually no mortality occurred, was atributed to (1) pre-buffering the water with sodium bicarbonate and sodium carbonate at 50 g/m3 (each)-and/or ATM Alka-HaulTM at 25 g/m3 -and applying additional (partial or full) doses throughout each transport, whenever the tanks were accessible; (2) pre-quenching ammonia with ATM TriageTM at 32 g/m3 , and applying additional (partial or full) doses throughout each transport, whenever the tanks were accessible; (3) keeping the dissolved oxygen saturation rate above 100%, ideally above 150%; (4) Keeping temperature on the lower limit of each species' tolerance range; (5) Using foam fractionators to effectively eliminate organic matter from the water and (6) Using pure sine wave inverters, which allows for a steady supply of electrical current throughout the transport. The use of a 'preventive' versus 'corrective' pH buffering philosophy is also discussed.


Asunto(s)
Salmo salar , Animales , Agua , Animales de Zoológico
10.
Neuroimage ; 227: 117611, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33309901

RESUMEN

Quantitative susceptibility mapping (QSM) is a physics-driven computational technique that has a high sensitivity in quantifying iron deposition based on MRI phase images. Furthermore, it has a unique ability to distinguish paramagnetic and diamagnetic contributions such as haemorrhage and calcification based on image contrast. These properties have contributed to a growing interest to use QSM not only in research but also in clinical applications. However, it is challenging to obtain high quality susceptibility map because of its ill-posed nature, especially for researchers who have less experience with QSM and the optimisation of its pipeline. In this paper, we present an open-source processing pipeline tool called SuscEptibility mapping PIpeline tool for phAse images (SEPIA) dedicated to the post-processing of MRI phase images and QSM. SEPIA connects various QSM toolboxes freely available in the field to offer greater flexibility in QSM processing. It also provides an interactive graphical user interface to construct and execute a QSM processing pipeline, simplifying the workflow in QSM research. The extendable design of SEPIA also allows developers to deploy their methods in the framework, providing a platform for developers and researchers to share and utilise the state-of-the-art methods in QSM.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Algoritmos , Mapeo Encefálico/métodos , Humanos , Programas Informáticos
11.
Neuroimage ; 232: 117897, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33621694

RESUMEN

Myelin water imaging techniques based on multi-compartment relaxometry have been developed as an important tool to measure myelin concentration in vivo, but are limited by the long scan time of multi-contrast multi-echo acquisition. In this work, a fast imaging technique, termed variable flip angle Echo Planar Time-Resolved Imaging (vFA-EPTI), is developed to acquire multi-echo and multi-flip-angle gradient-echo data with significantly reduced acquisition time, providing rich information for multi-compartment analysis of gradient-echo myelin water imaging (GRE-MWI). The proposed vFA-EPTI method achieved 26 folds acceleration with good accuracy by utilizing an efficient continuous readout, optimized spatiotemporal encoding across echoes and flip angles, as well as a joint subspace reconstruction. An approach to estimate off-resonance field changes between different flip-angle acquisitions was also developed to ensure high-quality joint reconstruction across flip angles. The accuracy of myelin water fraction (MWF) estimate under high acceleration was first validated by a retrospective undersampling experiment using a lengthy fully-sampled data as reference. Prospective experiments were then performed where whole-brain MWF and multi-compartment quantitative maps were obtained in 5 min at 1.5 mm isotropic resolution and 24 min at 1 mm isotropic resolution at 3T. Additionally, ultra-high resolution data at 600 µm isotropic resolution were acquired at 7T, which show detailed structures within the cortex such as the line of Gennari, demonstrating the ability of the proposed method for submillimeter GRE-MWI that can be used to study cortical myeloarchitecture in vivo.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Vaina de Mielina/metabolismo , Humanos , Estudios Retrospectivos , Agua/metabolismo
12.
Neuroimage ; 237: 118138, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33964461

RESUMEN

Multi-echo gradient echo (ME-GRE) magnetic resonance signal evolution in white matter has a strong dependence on the orientation of myelinated axons with respect to the main static field. Although analytical solutions have been able to predict some of the white matter (WM) signal behaviour of the hollow cylinder model, it has been shown that realistic models of WM offer a better description of the signal behaviour observed. In this work, we present a pipeline to (i) generate realistic 2D WM models with their microstructure based on real axon morphology with adjustable fiber volume fraction (FVF) and g-ratio. We (ii) simulate their interaction with the static magnetic field to be able to simulate their MR signal. For the first time, we (iii) demonstrate that realistic 2D WM models can be used to simulate a MR signal that provides a good approximation of the signal obtained from a real 3D WM model derived from electron microscopy. We then (iv) demonstrate in silico that 2D WM models can be used to predict microstructural parameters in a robust way if ME-GRE multi-orientation data is available and the main fiber orientation in each pixel is known using DTI. A deep learning network was trained and characterized in its ability to recover the desired microstructural parameters such as FVF, g-ratio, free and bound water transverse relaxation and magnetic susceptibility. Finally, the network was trained to recover these micro-structural parameters from an ex vivo dataset acquired in 9 orientations with respect to the magnetic field and 12 echo times. We demonstrate that this is an overdetermined problem and that as few as 3 orientations can already provide comparable results for some of the decoded metrics.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Neuroimagen/métodos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Anciano de 80 o más Años , Autopsia , Simulación por Computador , Estudios de Factibilidad , Femenino , Humanos , Imagen por Resonancia Magnética/normas , Microscopía Electrónica
13.
Magn Reson Med ; 86(3): 1241-1255, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33783037

RESUMEN

PURPOSE: The aim of the second quantitative susceptibility mapping (QSM) reconstruction challenge (Oct 2019, Seoul, Korea) was to test the accuracy of QSM dipole inversion algorithms in simulated brain data. METHODS: A two-stage design was chosen for this challenge. The participants were provided with datasets of multi-echo gradient echo images synthesized from two realistic in silico head phantoms using an MR simulator. At the first stage, participants optimized QSM reconstructions without ground truth data available to mimic the clinical setting. At the second stage, ground truth data were provided for parameter optimization. Submissions were evaluated using eight numerical metrics and visual ratings. RESULTS: A total of 98 reconstructions were submitted for stage 1 and 47 submissions for stage 2. Iterative methods had the best quantitative metric scores, followed by deep learning and direct inversion methods. Priors derived from magnitude data improved the metric scores. Algorithms based on iterative approaches and total variation (and its derivatives) produced the best overall results. The reported results and analysis pipelines have been made public to allow researchers to compare new methods to the current state of the art. CONCLUSION: The synthetic data provide a consistent framework to test the accuracy and robustness of QSM algorithms in the presence of noise, calcifications and minor voxel dephasing effects. Total Variation-based algorithms produced the best results among all metrics. Future QSM challenges should assess whether this good performance with synthetic datasets translates to more realistic scenarios, where background fields and dipole-incompatible phase contributions are included.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
14.
Magn Reson Med ; 86(1): 526-542, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33638241

RESUMEN

PURPOSE: To create a realistic in silico head phantom for the second QSM reconstruction challenge and for future evaluations of processing algorithms for QSM. METHODS: We created a digital whole-head tissue property phantom by segmenting and postprocessing high-resolution (0.64 mm isotropic), multiparametric MRI data acquired at 7 T from a healthy volunteer. We simulated the steady-state magnetization at 7 T using a Bloch simulator and mimicked a Cartesian sampling scheme through Fourier-based processing. Computer code for generating the phantom and performing the MR simulation was designed to facilitate flexible modifications of the phantom in the future, such as the inclusion of pathologies as well as the simulation of a wide range of acquisition protocols. Specifically, the following parameters and effects were implemented: TR and TE, voxel size, background fields, and RF phase biases. Diffusion-weighted imaging phantom data are provided, allowing future investigations of tissue-microstructure effects in phase and QSM algorithms. RESULTS: The brain part of the phantom featured realistic morphology with spatial variations in relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the phantom's properties, including the possibility of generating phase data with nonlinear evolution over TE due to partial-volume effects or complex distributions of frequency shifts within the voxel. CONCLUSION: The presented phantom and computer programs are publicly available and may serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility reconstruction algorithms.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Cabeza/diagnóstico por imagen , Humanos , Fantasmas de Imagen
15.
Neuroimage ; 221: 117159, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32663644

RESUMEN

Myelin water fraction (MWF) mapping based on data fitting of a 3-pool exponential model of multi-echo gradient echo (mGRE) data using MRI shows great promises for in vivo myelin quantification. However, this multi-exponential fitting is ill-conditioned because of the similar relaxation times and frequency shifts of the various compartments. Additionally, the bound water residing in the myelin sheath of white matter is expected to have a faster longitudinal magnetisation recovery than that of the free water in the intra-axonal and extra-axonal space. When the Ernst angle is used to achieve maximum SNR and improve fitting, this will introduce a T1-weighting effect to the derived MWF. In this study, we first demonstrate that diffusion-weighted imaging can be used to infer the compartmental signal properties using an analytical fibre model to achieve a robust MWF estimation. Second, we show that by incorporating a variable flip angle scheme to the mGRE acquisition with a multi-compartment relaxometry model, not only the MWF is corrected from the T1 dependency but also the fitting procedure becomes less ill-conditioned and more SNR efficient. Finally, we demonstrate these two approaches can be combined to allow higher spatial resolution MWF maps than what has been reported to date with robust MWF estimation on a small cohort.


Asunto(s)
Agua Corporal/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Modelos Teóricos , Vaina de Mielina , Neuroimagen/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Simulación por Computador , Femenino , Humanos , Masculino , Adulto Joven
16.
Neuroimage ; 218: 116783, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32413462

RESUMEN

Temporally independent functional modes (TFMs) are functional brain networks identified based on their temporal independence. The rationale behind identifying TFMs is that different functional networks may share a common anatomical infrastructure yet display distinct temporal dynamics. Extracting TFMs usually require a larger number of samples than acquired in standard fMRI experiments, and thus have therefore previously only been performed at the group level. Here, using an ultra-fast fMRI sequence, MESH-EPI, with a volume repetition time of 158 â€‹ms, we conducted an exploratory study with n â€‹= â€‹6 subjects and computed TFMs at the single subject level on both task and resting-state datasets. We identified 6 common temporal modes of activity in our participants, including a temporal default mode showing patterns of anti-correlation between the default mode and the task-positive networks, a lateralised motor mode and a visual mode integrating the visual cortex and the visual streams. In alignment with other findings reported recently, we also showed that independent time-series are largely free from confound contamination. In particular for ultra-fast fMRI, TFMs can separate the cardiac signal from other fluctuations. Using a non-linear dimensionality reduction technique, UMAP, we obtained preliminary evidence that combinations of spatial networks as described by the TFM model are highly individual. Our results show that it is feasible to measure reproducible TFMs at the single-subject level, opening new possibilities for investigating functional networks and their integration. Finally, we provide a python toolbox for generating TFMs and comment on possible applications of the technique and avenues for further investigation.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiología
17.
Hum Brain Mapp ; 41(10): 2629-2641, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32087047

RESUMEN

While structural network analysis consolidated the hypothesis of cerebral small vessel disease (SVD) being a disconnection syndrome, little is known about functional changes on the level of brain networks. In patients with genetically defined SVD (CADASIL, n = 41) and sporadic SVD (n = 46), we independently tested the hypothesis that functional networks change with SVD burden and mediate the effect of disease burden on cognitive performance, in particular slowing of processing speed. We further determined test-retest reliability of functional network measures in sporadic SVD patients participating in a high-frequency (monthly) serial imaging study (RUN DMC-InTENse, median: 8 MRIs per participant). Functional networks for the whole brain and major subsystems (i.e., default mode network, DMN; fronto-parietal task control network, FPCN; visual network, VN; hand somatosensory-motor network, HSMN) were constructed based on resting-state multi-band functional MRI. In CADASIL, global efficiency (a graph metric capturing network integration) of the DMN was lower in patients with high disease burden (standardized beta = -.44; p [corrected] = .035) and mediated the negative effect of disease burden on processing speed (indirect path: std. beta = -.20, p = .047; direct path: std. beta = -.19, p = .25; total effect: std. beta = -.39, p = .02). The corresponding analyses in sporadic SVD showed no effect. Intraclass correlations in the high-frequency serial MRI dataset of the sporadic SVD patients revealed poor test-retest reliability and analysis of individual variability suggested an influence of age, but not disease burden, on global efficiency. In conclusion, our results suggest that changes in functional connectivity networks mediate the effect of SVD-related brain damage on cognitive deficits. However, limited reliability of functional network measures, possibly due to age-related comorbidities, impedes the analysis in elderly SVD patients.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Conectoma/normas , Red en Modo Predeterminado , Imagen de Difusión Tensora/normas , Red Nerviosa , Adulto , Anciano , Anciano de 80 o más Años , CADASIL/diagnóstico por imagen , CADASIL/patología , CADASIL/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/patología , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Conectoma/métodos , Estudios Transversales , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/patología , Red en Modo Predeterminado/fisiopatología , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Reproducibilidad de los Resultados
18.
Magn Reson Med ; 84(3): 1218-1234, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32052486

RESUMEN

PURPOSE: The thalamus is an important brain structure and neurosurgical target, but its constituting nuclei are challenging to image non-invasively. Recently, susceptibility-weighted imaging (SWI) at ultra-high field has shown promising capabilities for thalamic nuclei mapping. In this work, several methodological improvements were explored to enhance SWI quality and contrast, and specifically its ability for thalamic imaging. METHODS: High-resolution SWI was performed at 7T in healthy participants, and the following techniques were applied: (a) monitoring and retrospective correction of head motion and B0 perturbations using integrated MR navigators, (b) segmentation and removal of venous vessels on the SWI data using vessel enhancement filtering, and (c) contrast enhancement by tuning the parameters of the SWI phase-magnitude combination. The resulting improvements were evaluated with quantitative metrics of image quality, and by comparison to anatomo-histological thalamic atlases. RESULTS: Even with sub-millimeter motion and natural breathing, motion and field correction produced clear improvements in both magnitude and phase data quality (76% and 41%, respectively). The improvements were stronger in cases of larger motion/field deviations, mitigating the dependence of image quality on subject performance. Optimizing the SWI phase-magnitude combination yielded substantial improvements in image contrast, particularly in the thalamus, well beyond previously reported SWI results. The atlas comparisons provided compelling evidence of anatomical correspondence between SWI features and several thalamic nuclei, for example, the ventral intermediate nucleus. Vein detection performed favorably inside the thalamus, and vein removal further improved visualization. CONCLUSION: Altogether, the proposed developments substantially improve high-resolution SWI, particularly for thalamic nuclei imaging.


Asunto(s)
Imagen por Resonancia Magnética , Núcleos Talámicos , Encéfalo , Humanos , Estudios Retrospectivos , Núcleos Talámicos/diagnóstico por imagen , Tálamo/diagnóstico por imagen
19.
Ann Neurol ; 86(4): 582-592, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31340067

RESUMEN

OBJECTIVE: To determine the contribution of acute infarcts, evidenced by diffusion-weighted imaging positive (DWI+) lesions, to progression of white matter hyperintensities (WMH) and other cerebral small vessel disease (SVD) markers. METHODS: We performed monthly 3T magnetic resonance imaging (MRI) for 10 consecutive months in 54 elderly individuals with SVD. MRI included high-resolution multishell DWI, and 3-dimensional fluid-attenuated inversion recovery, T1, and susceptibility-weighted imaging. We determined DWI+ lesion evolution, WMH progression rate (ml/mo), and number of incident lacunes and microbleeds, and calculated for each marker the proportion of progression explained by DWI+ lesions. RESULTS: We identified 39 DWI+ lesions on 21 of 472 DWI scans in 9 of 54 subjects. Of the 36 DWI+ lesions with follow-up MRI, 2 evolved into WMH, 4 evolved into a lacune (3 with cavity <3mm), 3 evolved into a microbleed, and 27 were not detectable on follow-up. WMH volume increased at a median rate of 0.027 ml/mo (interquartile range = 0.005-0.073), but was not significantly higher in subjects with DWI+ lesions compared to those without (p = 0.195). Of the 2 DWI+ lesions evolving into WMH on follow-up, one explained 23% of the total WMH volume increase in one subject, whereas the WMH regressed in the other subject. DWI+ lesions preceded 4 of 5 incident lacunes and 3 of 10 incident microbleeds. INTERPRETATION: DWI+ lesions explain only a small proportion of the total WMH progression. Hence, WMH progression seems to be mostly driven by factors other than acute infarcts. DWI+ lesions explain the majority of incident lacunes and small cavities, and almost one-third of incident microbleeds, confirming that WMH, lacunes, and microbleeds, although heterogeneous on MRI, can have a common initial appearance on MRI. ANN NEUROL 2019;86:582-592.


Asunto(s)
Infarto Encefálico/patología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Anciano , Anciano de 80 o más Años , Infarto Encefálico/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Imagen de Difusión por Resonancia Magnética , Progresión de la Enfermedad , Femenino , Humanos , Incidencia , Hemorragias Intracraneales/complicaciones , Hemorragias Intracraneales/patología , Masculino , Neuroimagen , Accidente Vascular Cerebral Lacunar/complicaciones , Accidente Vascular Cerebral Lacunar/patología , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/patología
20.
Hum Brain Mapp ; 40(6): 1786-1798, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30549128

RESUMEN

Quantitative magnetic resonance imaging generates images of meaningful physical or chemical variables measured in physical units that allow quantitative comparisons between tissue regions and among subjects scanned at the same or different sites. Here, we show that we can acquire quantitative T1 , T2* , and quantitative susceptibility mapping (QSM) information in a single acquisition, using a multi-echo (ME) extension of the second gradient-echo image of the MP2RAGE sequence. This combination is called MP2RAGE ME, or MP2RAGEME. The simultaneous acquisition results in large time savings, perfectly coregistered data, and minimal image quality differences compared to separately acquired data. Following a correction for residual transmit B1+ -sensitivity, quantitative T1 , T2* , and QSM values were in excellent agreement with those obtained from separately acquired, also B1+ -corrected, MP2RAGE data and ME gradient echo data. The quantitative values from reference regions of interests were also in very good correspondence with literature values. From the MP2RAGEME data, we further derived a multiparametric cortical parcellation, as well as a combined arterial and venous map. In sum, our MP2RAGEME sequence has the benefit in large time savings, perfectly coregistered data and minor image quality differences.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA