Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Adv Exp Med Biol ; 1329: 443-474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34664251

RESUMEN

The tumor microenvironment (TME) is a complex infrastructure composed of stromal, epithelial, and immune cells embedded in a vasculature ECM. The microenvironment surrounding mammary epithelium plays a critical role during the development and differentiation of the mammary gland, enabling the coordination of the complex multihormones and growth factor signaling processes. Progesterone/progesterone receptor paracrine signaling interactions in the microenvironment play vital roles in stem/progenitor cell function during normal breast development. In breast cancer, the female sex hormones, estrogen and progesterone, and growth factor signals are altered in the TME. Progesterone signaling modulates not only breast tumors but also the breast TME, leading to the activation of a series of cross-communications that are implicated in the genesis of breast cancers. This chapter reviews the evidence that progesterone and PR signaling modulates not only breast epitheliums but also the breast TME. Furthermore, crosstalk between estrogen and progesterone signaling affecting different cell types within the TME is discussed. A better understanding of how PR and progesterone affect the TME of breast cancer may lead to novel drugs or a therapeutic approach for the treatment of breast cancer shortly.


Asunto(s)
Glándulas Mamarias Humanas , Receptores de Progesterona , Mama , Femenino , Humanos , Receptores de Progesterona/genética , Transducción de Señal , Microambiente Tumoral
2.
Nutrients ; 16(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39064812

RESUMEN

Manuka honey (MH) exhibits potential antitumor activity in preclinical models of a number of human cancers. Treatment in vitro with MH at concentrations ranging from 0.3 to 5.0% (w/v) led to significant dose-dependent inhibition of proliferation of human breast cancer MCF-7 cells, but anti-proliferative effects of MH were less pronounced in MDA-MB-231 breast cancer cells. Effects of MH were also tested on non-malignant human mammary epithelial cells (HMECs) at 2.5% w/v, and it was found that MH reduced the proliferation of MCF-7 cells but not that of HMECs. Notably, the antitumor activity of MH was in the range of that exerted by treatment of MCF-7 cells with the antiestrogen tamoxifen. Further, MH treatment stimulated apoptosis of MCF-7 cells in vitro, with most cells exhibiting acute and significant levels of apoptosis that correlated with PARP activation. Additionally, the effects of MH induced the activation of AMPK and inhibition of AKT/mTOR downstream signaling. Treatment of MCF7 cells with increased concentrations of MH induced AMPK phosphorylation in a dose-dependent manner that was accompanied by inhibition of phosphorylation of AKT and mTOR downstream effector protein S6. In addition, MH reduced phosphorylated STAT3 levels in vitro, which may correlate with MH and AMPK-mediated anti-inflammatory properties. Further, in vivo, MH administered alone significantly inhibited the growth of established MCF-7 tumors in nude mice by 84%, resulting in an observable reduction in tumor volume. Our findings highlight the need for further research into the use of natural compounds, such as MH, for antitumor efficacy and potential chemoprevention and investigation of molecular pathways underlying these actions.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Proliferación Celular , Miel , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Animales , Apoptosis/efectos de los fármacos , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Leptospermum/química , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Factor de Transcripción STAT3/metabolismo , Progresión de la Enfermedad , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Fosforilación/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 107(32): 14484-9, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660740

RESUMEN

Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1alpha at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.


Asunto(s)
Neoplasias/irrigación sanguínea , Neovascularización Patológica , Receptores CXCR4/antagonistas & inhibidores , Factores de Crecimiento Endotelial Vascular/genética , Factor de Transcripción YY1/metabolismo , Animales , Línea Celular Tumoral , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Trasplante de Neoplasias , Neoplasias/metabolismo , Péptidos/farmacología , Ratas , Receptor Cross-Talk/fisiología , Receptores CXCR4/metabolismo , Factores de Transcripción , Trasplante Heterólogo , Factor de Transcripción YY1/fisiología
4.
J Steroid Biochem Mol Biol ; 227: 106230, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36450315

RESUMEN

The role of sex steroid hormones (SSHs) has been shown to modulate cancer cytotoxic treatment sensitivity. Dysregulation of DNA repair associated with genomic instability, abnormal cell survival and not only promotes cancer progression but also resistance to cancer treatment. The three major SSHs, androgen, estrogen, and progesterone, have been shown to interact with several essential DNA repair components. The presence of androgens directly regulates key molecules in DNA double-strand break (DSB) repair. Estrogen can promote cell proliferation and DNA repair, allowing cancer cells to tolerate chemotherapy and radiotherapy. Information on the role of progesterone in DNA repair is limited: progesterone interaction with some DNA repair components has been identified, but the biological significance is still unknown. Here, we review the roles of how each SSH affects DNA repair regulation and modulates response to genotoxic therapies and discuss future research that can be beneficial when combining SSHs with cancer therapy. We also provide preliminary analysis from publicly available databases defining the link between progesterone/PR and DDRs & DNA repair regulation that plausibly contribute to chemotherapy response and breast cancer patient survival.


Asunto(s)
Neoplasias de la Mama , Progesterona , Humanos , Femenino , Reparación del ADN , Roturas del ADN de Doble Cadena , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Estrógenos , Andrógenos
5.
JTO Clin Res Rep ; 2(4): 100150, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34590007

RESUMEN

INTRODUCTION: Estrogen receptors (ER) (ERα, ERß) and aromatase (key enzyme for estrogen synthesis) are expressed in most human NSCLCs. High intratumoral estrogen levels and elevated aromatase expression in NSCLC predict poor outcome. This open-label, phase 1b, single-center study evaluated the safety and tolerability of escalating doses of the aromatase inhibitor, exemestane, in combination with carboplatin and pemetrexed in postmenopausal women with stage IV nonsquamous NSCLC. METHODS: Patients received exemestane (starting 1-wk before chemotherapy) at 25 mg orally (PO) daily (cohort 1) or 50 mg PO daily (cohort 2) combined with carboplatin (area under the curve 6 mg × min/mL) and pemetrexed (500 mg/m2) intravenously every 3 weeks for four cycles. Thereafter, patients were eligible for continued therapy with exemestane and pemetrexed or pemetrexed alone. RESULTS: A total of 10 patients consented for therapy, and two patients failed in the screening. Four patients completed the therapy in cohort 1 and four patients in cohort 2. The median number of cycles administered was 15 (range: 1-54). Maximum tolerated dose was exemestane 50 mg PO daily with combination chemotherapy. Intention-to-treat analysis revealed an objective response rate (ORR) of 62.5% (five of eight patients with partial response) and a clinical benefit rate of 87.5% (seven of eight patients with either stable disease or partial response). ORR was associated with aromatase expression (p = 0.02). Circulating estrogen levels decreased with exemestane use, and quality of life measurements did not significantly change during the treatment. There were no adverse events. CONCLUSIONS: The combination of carboplatin, pemetrexed, and exemestane in postmenopausal women with metastatic NSCLC is safe and well tolerated. Biomarker studies revealed that ORR correlates with tumor aromatase expression. These findings support future clinical trials to confirm the antitumor efficacy with this combination therapy.

6.
Cancer Lett ; 449: 66-75, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30771431

RESUMEN

Angiogenesis is critical for breast cancer progression. Overexpression of HER-2/neu receptors occur in 25-30% of breast cancers, and treatment with trastuzumab inhibits HER-2-overexpressing tumor growth. Notably, HER-2-mediated signaling enhances vascular endothelial growth factor (VEGF) secretion to increase tumor-associated angiogenesis. Squalamine (aminosterol compound) suppresses VEGF-induced activation of kinases in vascular endothelial cells and inhibits tumor-associated angiogenesis. We assessed antitumor effects of squalamine either alone or with trastuzumab in nude mice bearing breast tumor xenografts without (MCF-7) or with HER2-overexpression (MCF-7/HER-2). Squalamine alone inhibited progression of MCF-7 tumors lacking HER2 overexpression, and squalamine combined with trastuzumab elicited marked inhibition of MCF-7/HER2 growth exceeding that of trastuzumab alone. MCF-7/HER-2 cells secrete higher levels of VEGF than MCF-7 cells, but squalamine elicited no growth inhibition of either MCF-7/HER-2 or MCF-7 cells in vitro. However, squalamine did stop growth of human umbilical vein endothelial cells (HUVECs) and reduced VEGF-induced endothelial tube-like formations in vitro. These effects correlated with blockade of focal adhesion kinase phosphorylation and stress fiber assembly in HUVECs. Thus, squalamine effectively inhibits growth of breast cancers with or without HER-2-overexpression, an effect due in part to blockade of tumor-associated angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Colestanoles/administración & dosificación , Colestanoles/farmacología , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Ratones , Fosforilación/efectos de los fármacos , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Trastuzumab/administración & dosificación , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Steroid Biochem Mol Biol ; 193: 105415, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31226312

RESUMEN

Breast cancers (BCs) with expression of estrogen receptor-alpha (ERα) occur in more than 70% of newly-diagnosed patients in the U.S. Endocrine therapy with antiestrogens or aromatase inhibitors is an important intervention for BCs that express ERα, and it remains one of the most effective targeted treatment strategies. However, a substantial proportion of patients with localized disease, and essentially all patients with metastatic BC, become resistant to current endocrine therapies. ERα is present in most resistant BCs, and in many of these its activity continues to regulate BC growth. Fulvestrant represents one class of ERα antagonists termed selective ER downregulators (SERDs). Treatment with fulvestrant causes ERα down-regulation, an event that helps overcome several resistance mechanisms. Unfortunately, full antitumor efficacy of fulvestrant is limited by its poor bioavailability in clinic. We have designed and tested a new generation of steroid-like SERDs. Using ERα-positive BC cells in vitro, we find that these compounds suppress ERα protein levels with efficacy similar to fulvestrant. Moreover, these new SERDs markedly inhibit ERα-positive BC cell transcription and proliferation in vitro even in the presence of estradiol-17ß. In vivo, the SERD termed JD128 significantly inhibited tumor growth in MCF-7 xenograft models in a dose-dependent manner (P < 0.001). Further, our findings indicate that these SERDs also interact with ER-positive immune cells in the tumor microenvironment such as myeloid-derived suppressor cells (MDSC), tumor infiltrating lymphocytes and other selected immune cell subpopulations. SERD-induced inhibition of MDSCs and concurrent actions on CD8+ and CD4 + T-cells promotes interaction of immune checkpoint inhibitors with BC cells in preclinical models, thereby leading to enhanced tumor killing even among highly aggressive BCs such as triple-negative BC that lack ERα expression. Since monotherapy with immune checkpoint inhibitors has not been effective for most BCs, combination therapies with SERDs that enhance immune recognition may increase immunotherapy responses in BC and improve patient survival. Hence, ERα antagonists that also promote ER downregulation may potentially benefit patients who are unresponsive to current endocrine therapies.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Antagonistas de Estrógenos/uso terapéutico , Animales , Antineoplásicos Hormonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/inmunología , Antagonistas de Estrógenos/farmacología , Femenino , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , Ratones Desnudos , Receptores de Estrógenos/metabolismo
9.
Mol Cell Endocrinol ; 466: 51-72, 2018 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-29146555

RESUMEN

Estrogen and progesterone play essential roles in the development and progression of breast cancer. Over 70% of breast cancers express estrogen receptors (ER) and progesterone receptors (PR), emphasizing the need for better understanding of ER and PR signaling. ER and PR are traditionally viewed as transcription factors that directly bind DNA to regulate gene networks. In addition to nuclear signaling, ER and PR mediate hormone-induced, rapid extranuclear signaling at the cell membrane or in the cytoplasm which triggers downstream signaling to regulate rapid or extended cellular responses. Specialized membrane and cytoplasmic proteins may also initiate hormone-induced extranuclear signaling. Rapid extranuclear signaling converges with its nuclear counterpart to amplify ER/PR transcription and specify gene regulatory networks. This review summarizes current understanding and updates on ER and PR extranuclear signaling. Further investigation of ER/PR extranuclear signaling may lead to development of novel targeted therapeutics for breast cancer management.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Animales , Mama/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Receptores de Estrógenos/química , Receptores de Estrógenos/genética , Receptores de Progesterona/química , Receptores de Progesterona/genética
10.
Lung Cancer ; 123: 91-98, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089602

RESUMEN

OBJECTIVES: This open-label, randomized phase II trial evaluated antitumor efficacy of an antiestrogen, fulvestrant, in combination with human epidermal growth factor receptor (EGFR) inhibitor, erlotinib, in advanced non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS: Patients with advanced or metastatic NSCLC, ECOG 0-2, previous chemotherapy unless patient refusal, and no prior EGFR-directed therapy were randomized 2:1 to erlotinib 150 mg oral daily plus 500 mg intramuscular fulvestrant on day 1, 15, 29 and every 28 days thereafter or erlotinib alone 150 mg oral daily. The primary end point was objective response rate (ORR); secondary endpoints included progression free survival (PFS) and overall survival (OS). RESULTS: Among 106 randomized patients, 100 received at least one dose of study drug. ORR was 16.4% (11 of 67 patients) for the combination versus 12.1% (4 of 33 patients) for erlotinib (p = 0.77). PFS median 3.5 versus 1.9 months [HR = 0.86, 95% CI (0.52-1.43), p = 0.29] and OS median 9.5 versus 5.8 months [HR = 0.92, 95% CI (0.57-1.48), p = 0.74] numerically favored the combination. In an unplanned subset analysis, among EGFR wild type patients (n = 51), but not EGFR mutant patients (n = 17), median PFS was 3.5 versus 1.7 months [HR = 0.35, 95% CI (0.14-0.86), p = 0.02] and OS was 6.2 versus 5.2 months [HR = 0.72, 95% CI (0.35-1.48), p = 0.37] for combined therapy versus erlotinib, respectively. Notably, EGFR WT patients were more likely to be hormone receptor-positive (either estrogen receptor α- and/or progesterone receptor-positive) compared to EGFR mutant patients (50% versus 9.1%, respectively) (p = 0.03). Treatment was well tolerated with predominant grade 1-2 dermatologic and gastrointestinal adverse effects. CONCLUSION: Addition of fulvestrant to erlotinib was well tolerated, with increased activity noted among EGFR wild type patients compared to erlotinib alone, albeit in an unplanned subset analysis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Clorhidrato de Erlotinib/administración & dosificación , Femenino , Fulvestrant/administración & dosificación , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Análisis de Supervivencia , Resultado del Tratamiento
11.
Steroids ; 72(2): 135-43, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276470

RESUMEN

Lung cancer is the most common cause of cancer mortality in male and female patients in the US. The etiology of non-small cell lung cancer (NSCLC) is not fully defined, but new data suggest that estrogens and growth factors promote tumor progression. In this work, we confirm that estrogen receptors (ER), both ERalpha and ERbeta, occur in significant proportions of archival NSCLC specimens from the clinic, with receptor expression in tumor cell nuclei and in extranuclear sites. Further, ERalpha in tumor nuclei was present in activated forms as assessed by detection of ER phosphorylation at serines-118 and -167, residues commonly modulated by growth factor receptor as well as steroid signaling. In experiments using small interfering RNA (siRNA) constructs, we find that suppressing expression of either ERalpha or ERbeta elicits a significant reduction in NSCLC cell proliferation in vitro. Estrogen signaling in NSCLC cells may also include steroid receptor coactivators (SRC), as SRC-3 and MNAR/PELP1 are both expressed in several lung cell lines, and both EGF and estradiol elicit serine phosphorylation of SRC-3 in vitro. EGFR and ER also cooperate in promoting early activation of p42/p44 MAP kinase in NSCLC cells. To assess new strategies to block NSCLC growth, we used Faslodex alone and with erlotinib, an EGFR kinase inhibitor. The drug tandem elicited enhanced blockade of the growth of NSCLC xenografts in vivo, and antitumor activity exceeded that of either agent given alone. The potential for use of antiestrogens alone and with growth factor receptor antagonists is now being pursued further in clinical trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptor alfa de Estrógeno/fisiología , Receptor beta de Estrógeno/fisiología , Neoplasias Pulmonares/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos
12.
Cancer Res ; 65(24): 11287-91, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16357134

RESUMEN

Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Aromatasa/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Nitrilos/uso terapéutico , Triazoles/uso terapéutico , Anastrozol , Androstenodiona/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Immunoblotting , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Ovariectomía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo
13.
Cancer Lett ; 374(2): 279-91, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26892043

RESUMEN

Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/antagonistas & inhibidores , Receptores ErbB/metabolismo , Femenino , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Dominios Proteicos Ricos en Prolina , Receptores de Progesterona/biosíntesis , Receptores de Progesterona/genética , Transducción de Señal
14.
PLoS One ; 10(5): e0127600, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26001082

RESUMEN

BACKGROUND: Ribonucleotide reductase catalyzes the conversion of ribonucleotide diphosphates to deoxyribonucleotide diphosphates. The functional enzyme consists of two subunits - one large (RRM1) and one small (RRM2 or RRM2b) subunit. Expression levels of each subunit have been implicated in prognostic outcomes in several different types of cancers. EXPERIMENTAL DESIGN: Immunohistochemistry for RRM1 and RRM2 was performed on a lung cancer tissue microarray (TMA) and analyzed. 326 patients from the microarray were included in this study. RESULTS: In non-small cell lung cancer (NSCLC), RRM2 expression was strongly predictive of disease-specific survival in women, non-smokers and former smokers who had quit at least 10 years prior to being diagnosed with lung cancer. Higher expression was associated with worse survival. This was not the case for men, current smokers and those who had stopped smoking for shorter periods of time. RRM1 was not predictive of survival outcomes in any subset of the patient group. CONCLUSION: RRM2, but not RRM1, is a useful predictor of survival outcome in certain subsets of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Pronóstico , Ribonucleósido Difosfato Reductasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Anciano , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Factores Sexuales , Fumar , Tasa de Supervivencia
16.
J Thorac Oncol ; 8(3): 270-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23399957

RESUMEN

INTRODUCTION: Estrogen receptor (ER) signaling and its interaction with epidermal growth factor receptor (EGFR) is a potential therapeutic target in non-small-cell lung cancer (NSCLC). To explore cross-communication between ER and EGFR, we have correlated ER pathway gene and protein expression profiles and examined effects of antiestrogens with or without EGFR inhibitors in preclinical models of human NSCLC. METHODS: We evaluated 54 NSCLC cell lines for growth inhibition with EGFR inhibitors, antiestrogen treatment, or the combination. Each line was evaluated for baseline ER pathway protein expression. The majority were also evaluated for baseline ER pathway gene expression. Human NSCLC xenografts were evaluated for effects of inhibition of each pathway, either individually, or in combination. RESULTS: The specific antiestrogen fulvestrant has modest single agent activity in vitro, but in many lines, fulvestrant adds to effects of EGFR inhibitors, including synergy in the EGFR-mutant, erlotinib-resistant H1975 line. ERα, ERß, progesterone receptor-A, progesterone receptor-B, and aromatase proteins are expressed in all lines to varying degrees, with trends toward lower aromatase in more sensitive cell lines. Sensitivity to fulvestrant correlates with greater baseline ERα gene expression. Tumor stability is achieved in human tumor xenografts with either fulvestrant or EGFR inhibitors, but tumors regress significantly when both pathways are inhibited. CONCLUSIONS: These data provide a rationale for further investigation of the antitumor activity of combined therapy with antiestrogen and anti-EGFR agents in the clinic. Future work should also evaluate dual ER and EGFR inhibition in the setting of secondary resistance to EGFR inhibition.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Estradiol/análogos & derivados , Moduladores de los Receptores de Estrógeno/farmacología , Neoplasias Pulmonares/patología , Quinazolinas/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Estradiol/farmacología , Fulvestrant , Gefitinib , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Células Tumorales Cultivadas
17.
Lung Cancer Manag ; 1(4): 259-272, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23650476

RESUMEN

Lung cancer is the leading cause of cancer-related deaths in both men and women worldwide. Despite advances in treatment, patients have few effective therapeutic options and survival rates remain low. Emerging evidence suggests that the hormones estrogen and progesterone play a key role in the progression of non-small-cell lung cancer (NSCLC). The aromatase enzyme, which is responsible for a key step in estrogen biosynthesis, elicits higher levels of estrogen in lung tumors as well as in metastases compared with nonmalignant tissues. Thus, aromatase may prove to be a key predictive biomarker for treatment of NSCLC. Epidemiologic and preclinical data show estrogens play a critical role in lung tumor development and progression. Two estrogen receptors, α and ß, are expressed in normal and in cancerous lung epithelium, and estrogen promotes gene transcription that stimulates cell proliferation and inhibits cell death. Furthermore, expression of both forms of estrogen receptor, progesterone receptor and aromatase in NSCLC specimens has been correlated with worse clinical outcomes. Combination therapies that include estrogen receptor downregulators and aromatase inhibitors are currently being assessed in Phase I-II clinical trials among patients with advanced NSCLC. Results will help guide future lung cancer management decisions, with a goal of achieving more effective and less toxic treatments for patients.

18.
Steroids ; 76(9): 910-20, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21600232

RESUMEN

Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERß) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Antígeno AC133 , Aldehído Deshidrogenasa/metabolismo , Animales , Antígenos CD/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Medios de Cultivo Condicionados , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Estradiol/farmacología , Estradiol/fisiología , Estrógenos/farmacología , Estrógenos/fisiología , Femenino , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones SCID , Mifepristona/farmacología , Trasplante de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Péptidos/metabolismo , Progestinas/antagonistas & inhibidores , Progestinas/farmacología , Receptores de Progesterona/genética , Transcripción Genética , Cordón Umbilical/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Ann N Y Acad Sci ; 1155: 194-205, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19250205

RESUMEN

Lung cancer has become increasingly common in women, and gender differences in the physiology and pathogenesis of the disease have suggested a role for estrogens. In the lung recent data have shown local production of estrogens from androgens via the action of aromatase enzyme and higher levels of estrogen in tumor tissue as compared with surrounding normal lung tissue. High levels of aromatase expression are also maintained in metastases as compared with primary tumors. Consistent with these findings, clinical studies suggest that aromatase expression may be a useful predictive biomarker for prognosis in the management of non-small cell lung cancer (NSCLC), the most common form of lung malignancy. Low levels of aromatase associate with a higher probability of long-term survival in older women with early stage NSCLC. Treatment of lung NSCLC xenografts in vivo with an aromatase inhibitor (exemestane) alone or combined with standard cisplatin chemotherapy elicits a significant reduction in tumor progression as compared to paired controls. Further, lung cancer progression is also governed by complex interactions between estrogen and growth factor signaling pathways to stimulate the growth of NSCLC as well as tumor-associated angiogenesis. We find that combination therapy with the multitargeted growth factor receptor inhibitor vandetanib and the estrogen receptor antagonist fulvestrant inhibit tumor growth more effectively than either treatment administered alone. Thus, incorporation of antiestrogen treatment strategies in standard antitumor therapies for NSCLC may contribute to improved patient outcome, an approach that deserves to be tested in clinical trials.


Asunto(s)
Aromatasa/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Estrógenos/metabolismo , Neoplasias Pulmonares/metabolismo , Transducción de Señal , Animales , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , División Celular/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Factor de Crecimiento Epidérmico/fisiología , Moduladores de los Receptores de Estrógeno/uso terapéutico , Estrógenos/fisiología , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Trasplante Heterólogo
20.
Carcinogenesis ; 27(12): 2424-33, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16785249

RESUMEN

Epidemiologic data have suggested that green tea may prevent breast cancer. Studies in our laboratory have provided evidence that green tea extract inhibits breast cancer growth by a direct anti-proliferative effect on the tumor cells, as well as by indirect suppressive effects on the tumor-associated endothelial cells. In this study, we asked whether concurrent administration of green tea may add to the anti-tumor effects of standard breast cancer therapy. We observed that green tea increased the inhibitory effect of tamoxifen on the proliferation of the ER (estrogen receptor)-positive MCF-7, ZR75, T47D human breast cancer cells in vitro. This combination regimen was also more potent than either agent alone at increasing cell apoptosis. In animal experiments, mice treated with both green tea and tamoxifen had the smallest MCF-7 xenograft tumor size, and the highest levels of apoptosis in tumor tissue, as compared with either agent administered alone. Moreover, the suppression of angiogenesis in vivo correlated with larger areas of necrosis and lower tumor blood vessel density in treated xenografts. Green tea decreased levels of ER-alpha in tumors both in vitro and in vivo. We also observed that green tea blocked ER-dependent transcription, as well as estradiol-induced phosphorylation and nuclear localization of mitogen-activated protein kinase. To our knowledge, this study is the first to show the interaction of green tea with the ER pathway, as well as provide mechanistic evidence that the combination of green tea and tamoxifen is more potent than either agent alone in suppressing breast cancer growth. These results may lead to future improvements in breast cancer treatment and prevention.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Extractos Vegetales/farmacología , Tamoxifeno/farmacología , Animales , Apoptosis , Bebidas , División Celular/efectos de los fármacos , Línea Celular Tumoral , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Extractos Vegetales/uso terapéutico , Tamoxifeno/uso terapéutico , Transcripción Genética/efectos de los fármacos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA