Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 107(7): 4288-4297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38462069

RESUMEN

The use of natural milk culture (NMC) represents a key factor in Protected Designation of Origin (PDO) Montasio cheese, contributing to its distinctive sensory profile. The complex microbial ecosystem of NMC is the result of heat treatment and incubation conditions, which can vary considerably among different production plants. In this study, the microbiota of NMC collected from 10 PDO Montasio cheese dairies was investigated by employing colony counts and metagenomic analysis. Furthermore, residual sugars, organic acids, and volatile profiles were quantitatively investigated. Results showed that Streptococcus thermophilus was the dominant species in all NMC, and a subdominant population made of other streptococci and Ligilactobacillus salivarius was also present. The incubation temperature appeared to be the main driver of biodiversity in NMC. Metagenomics allowed us to evidence the presence of minor species involving safety (e.g., Staphylococcus aureus) as well as possible functional aspects (Next Generation Probiotics). Statistical analysis based on residual sugars, organic acids, and volatiles' content allowed to correlate the presence of specific microbial groups with metabolites of great technological and sensory relevance, which can contribute to giving value to the artisanal production procedures of NMC and clarify their role in the creation of the characteristics of PDO Montasio cheese.


Asunto(s)
Biodiversidad , Queso , Leche , Leche/microbiología , Queso/microbiología , Animales
2.
Plant J ; 107(4): 1056-1071, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087008

RESUMEN

The characterization of the genetic basis of maize (Zea mays) leaf development may support breeding efforts to obtain plants with higher vigor and productivity. In this study, a mapping panel of 197 biparental and multiparental maize recombinant inbred lines (RILs) was analyzed for multiple leaf traits at the seedling stage. RNA sequencing was used to estimate the transcription levels of 29 573 gene models in RILs and to derive 373 769 single nucleotide polymorphisms (SNPs), and a forward genetics approach combining these data was used to pinpoint candidate genes involved in leaf development. First, leaf traits were correlated with gene expression levels to identify transcript-trait correlations. Then, leaf traits were associated with SNPs in a genome-wide association (GWA) study. An expression quantitative trait locus mapping approach was followed to associate SNPs with gene expression levels, prioritizing candidate genes identified based on transcript-trait correlations and GWAs. Finally, a network analysis was conducted to cluster all transcripts in 38 co-expression modules. By integrating forward genetics approaches, we identified 25 candidate genes highly enriched for specific functional categories, providing evidence supporting the role of vacuolar proton pumps, cell wall effectors, and vesicular traffic controllers in leaf growth. These results tackle the complexity of leaf trait determination and may support precision breeding in maize.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hojas de la Planta/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Zea mays/crecimiento & desarrollo , Zea mays/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Desequilibrio de Ligamiento , Fenotipo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple
3.
Plant J ; 107(6): 1631-1647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34219317

RESUMEN

Vitis vinifera is an economically important crop and a useful model in which to study chromatin dynamics. In contrast to the small and relatively simple genome of Arabidopsis thaliana, grapevine contains a complex genome of 487 Mb that exhibits extensive colonization by transposable elements. We used Hi-C, ChIP-seq and ATAC-seq to measure how chromatin features correlate to the expression of 31 845 grapevine genes. ATAC-seq revealed the presence of more than 16 000 open chromatin regions, of which we characterize nearly 5000 as possible distal enhancer candidates that occur in intergenic space > 2 kb from the nearest transcription start site (TSS). A motif search identified more than 480 transcription factor (TF) binding sites in these regions, with those for TCP family proteins in greatest abundance. These open chromatin regions are typically within 15 kb from their nearest promoter, and a gene ontology analysis indicated that their nearest genes are significantly enriched for TF activity. The presence of a candidate cis-regulatory element (cCRE) > 2 kb upstream of the TSS, location in the active nuclear compartment as determined by Hi-C, and the enrichment of H3K4me3, H3K4me1 and H3K27ac at the gene are correlated with gene expression. Taken together, these results suggest that regions of intergenic open chromatin identified by ATAC-seq can be considered potential candidates for cis-regulatory regions in V. vinifera. Our findings enhance the characterization of a valuable agricultural crop, and help to clarify the understanding of unique plant biology.


Asunto(s)
Cromatina/genética , Histonas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Vitis/genética , Sitios de Unión , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Metilación de ADN , ADN Intergénico , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Histonas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
4.
Genet Sel Evol ; 54(1): 8, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35100964

RESUMEN

BACKGROUND: Brown trout is one of the most widespread fresh-water fish species in Europe. The evolutionary history of and phylogenetic relationships between brown trout populations are complex, and this is especially true for Italian populations, which are heavily influenced in different ways by stocking practices. The characterization of the genetic structure of Italian brown trout populations may give information on the risk of losing endemic Italian populations due to lack of genetic diversity or to admixture with stocking populations. The identification of signatures of selection, and the information deriving from dense genotyping data will help genotype-informed breeding programs. We used a ddRAD-seq approach to obtain more than 100,000 single nucleotide polymorphisms (SNPs), and to characterize the population structure and signatures of selection in 90 brown trout samples. RESULTS: Italian brown trout populations are genetically differentiated, although the stocking practices have introduced strong admixture in endemic Italian trout, especially with the Atlantic lineage. Most of the analysed populations showed high levels of kinship and inbreeding. We detected putative signatures of selection using different approaches, and investigated if the regions were enriched for functional categories. Several regions putatively under selection and characterized by a reduction in heterozygosity across all the studied populations are enriched for genes involved in the response to viral infections. CONCLUSIONS: Our results, which show evidence of admixture with the Atlantic lineage (commonly used for stocking), confirm the need for controlling stocking practices, in order to avoid the erosion of the endemic gene pool; given the apparently high levels of kinship and inbreeding in local populations, our results also show the need to take action for increasing gene diversity. In addition, we used the genetically-distinct lineages to detect signatures of selection and we identified putative signatures of selection in several regions associated with resistance to infectious diseases. These constitute candidate regions for the study of resistance to infections in wild and farmed trout.


Asunto(s)
Trucha , Animales , Genotipo , Endogamia , Filogenia , Trucha/genética
5.
Plant J ; 103(4): 1420-1432, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32391598

RESUMEN

Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety "Big Star*" and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome-wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.


Asunto(s)
Domesticación , Genoma de Planta/genética , Prunus avium/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , ADN Satélite/genética , Genes de Plantas/genética , Variación Genética/genética , Genética de Población
6.
Physiol Plant ; 173(3): 935-953, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34245168

RESUMEN

The simultaneous presence of different N-forms in the rhizosphere leads to beneficial effects on nitrogen (N) nutrition in plants. Although widely used as fertilizers, the occurrence of cross connection between urea and ammonium nutrition has been scarcely studied in plants. Maize fed with a mixture of urea and ammonium displayed a better N-uptake efficiency than ammonium- or urea-fed plants (Buoso et al., Plant Physiol Biochem, 2021a; 162: 613-623). Through multiomic approaches, we provide the molecular characterization of maize response to urea and ammonium nutrition. Several transporters and enzymes involved in N-nutrition were upregulated by all three N-treatments (urea, ammonium, or urea and ammonium). Already after 1 day of treatment, the availability of different N-forms induced specific transcriptomic and metabolomic responses. The combination of urea and ammonium induced a prompt assimilation of N, characterized by high levels of some amino acids in shoots. Moreover, ZmAMT1.1a, ZmGLN1;2, ZmGLN1;5, ZmGOT1, and ZmGOT3, as well transcripts involved in glycolysis-TCA cycle were induced in roots by urea and ammonium mixture. Depending on N-form, even changes in the composition of phytohormones were observed in maize. This study paves the way to formulate guidelines for the optimization of N fertilization to improve N-use efficiency in maize and therefore limit N-losses in the environment.


Asunto(s)
Compuestos de Amonio , Zea mays , Compuestos de Amonio/metabolismo , Fertilizantes , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Transcriptoma , Urea , Zea mays/genética , Zea mays/metabolismo
7.
Plant J ; 99(5): 895-909, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31034726

RESUMEN

The transcriptional regulatory structure of plant genomes is still relatively unexplored, and little is known about factors that influence expression variation in plants. We used a genetic system consisting of 10 heterozygous grape varieties with high consanguinity and high haplotypic diversity to: (i) identify regions of haplotype sharing through whole-genome resequencing and single-nucleotide polymorphism (SNP) genotyping; (ii) analyse gene expression through RNA-seq in four stages of berry development; and (iii) associate gene expression variation with genetic and epigenetic properties. We found that haplotype sharing in and around genes was positively correlated with similarity in expression and was negatively correlated with the fraction of differentially expressed genes. Genetic and epigenetic properties of the gene and the surrounding region showed significant effects on the extent of expression variation, with negative associations for the level of gene body methylation and mean expression level, and with positive associations for nucleotide diversity, structural diversity and ratio of non-synonymous to synonymous nucleotide diversity. We also observed a spatial dependency of covariation of gene expression among varieties. These results highlight relevant roles for cis-acting factors, selective constraints and epigenetic features of the gene, and the regional context in which the gene is located, in the determination of expression variation. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA385116; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA392287; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA373967 (released upon publication); https://www.ncbi.nlm.nih.gov/bioproject/PRJNA490160 (released upon publication); https://www.ncbi.nlm.nih.gov/bioproject/PRJNA265039; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA265040.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Variación Genética , Genómica , Vitis/genética , Cromosomas de las Plantas/genética , Frutas/genética , Redes Reguladoras de Genes , Haplotipos , Heterocigoto , Redes y Vías Metabólicas/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Vitis/clasificación
8.
Genet Sel Evol ; 52(1): 25, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32408891

RESUMEN

BACKGROUND: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. RESULTS: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed [Formula: see text] profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. CONCLUSIONS: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.


Asunto(s)
Genética de Población/métodos , Polimorfismo de Nucleótido Simple/genética , Ovinos/genética , Animales , Peninsula Balcánica , Cruzamiento/métodos , Domesticación , Pruebas Genéticas/métodos , Variación Genética/genética , Genotipo , Filogenia , Filogeografía/métodos
9.
BMC Genomics ; 20(1): 703, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31500568

RESUMEN

BACKGROUND: 'Candidatus Phytoplasma solani' is endemic in Europe and infects a wide range of weeds and cultivated plants. Phytoplasmas are prokaryotic plant pathogens that colonize the sieve elements of their host plant, causing severe alterations in phloem function and impairment of assimilate translocation. Typical symptoms of infected plants include yellowing of leaves or shoots, leaf curling, and general stunting, but the molecular mechanisms underlying most of the reported changes remain largely enigmatic. To infer a possible involvement of Fe in the host-phytoplasma interaction, we investigated the effects of 'Candidatus Phytoplasma solani' infection on tomato plants (Solanum lycopersicum cv. Micro-Tom) grown under different Fe regimes. RESULTS: Both phytoplasma infection and Fe starvation led to the development of chlorotic leaves and altered thylakoid organization. In infected plants, Fe accumulated in phloem tissue, altering the local distribution of Fe. In infected plants, Fe starvation had additive effects on chlorophyll content and leaf chlorosis, suggesting that the two conditions affected the phenotypic readout via separate routes. To gain insights into the transcriptional response to phytoplasma infection, or Fe deficiency, transcriptome profiling was performed on midrib-enriched leaves. RNA-seq analysis revealed that both stress conditions altered the expression of a large (> 800) subset of common genes involved in photosynthetic light reactions, porphyrin / chlorophyll metabolism, and in flowering control. In Fe-deficient plants, phytoplasma infection perturbed the Fe deficiency response in roots, possibly by interference with the synthesis or transport of a promotive signal transmitted from the leaves to the roots. CONCLUSIONS: 'Candidatus Phytoplasma solani' infection changes the Fe distribution in tomato leaves, affects the photosynthetic machinery and perturbs the orchestration of root-mediated transport processes by compromising shoot-to-root communication.


Asunto(s)
Acholeplasmataceae/fisiología , Hierro/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Transporte Biológico , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Fotosíntesis/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología
10.
Plant Mol Biol ; 101(1-2): 129-148, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31267256

RESUMEN

Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for fruit tree cultivation such as apple (Malus × domestica) leading very often to a decrease of fruit productivity and quality worsening. Aim of this study was to characterize common and specific features of plant response to Fe and P deficiencies by ionomic, transcriptomic and exudation profiling of apple roots. Under P deficiency, the root release of oxalate and flavonoids increased. Genes encoding for transcription factors and transporters involved in the synthesis and release of root exudates were upregulated by P-deficient roots, as well as those directly related to P acquisition. In Fe-deficiency, plants showed an over-accumulation of P, Zn, Cu and Mn and induced the transcription of those genes involved in the mechanisms for the release of Fe-chelating compounds and Fe mobilization inside the plants. The intriguing modulation in roots of some transcription factors, might indicate that, in this condition, Fe homeostasis is regulated by a FIT-independent pathway. In the present work common and specific features of apple response to Fe and P deficiency has been reported. In particular, data indicate similar modulation of a. 230 genes, suggesting the occurrence of a crosstalk between the two nutritional responses involving the transcriptional regulation, shikimate pathway, and the root release of exudates.


Asunto(s)
Deficiencias de Hierro , Malus/fisiología , Fósforo/deficiencia , Transcriptoma , Transporte Biológico , Perfilación de la Expresión Génica , Homeostasis , Hierro/metabolismo , Malus/genética , Fósforo/metabolismo , Exudados de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Análisis de Secuencia de ARN
11.
Ann Bot ; 124(4): 543-552, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30932149

RESUMEN

BACKGROUND AND AIMS: The advent of molecular breeding is advocated to improve the productivity and sustainability of second-generation bioenergy crops. Advanced molecular breeding in bioenergy crops relies on the ability to massively sample the genetic diversity. Genotyping-by-sequencing has become a widely adopted method for cost-effective genotyping. It basically requires no initial investment for design as compared with array-based platforms which have been shown to offer very robust assays. The latter, however, has the drawback of being limited to analyse only the genetic diversity accounted during selection of a set of polymorphisms and design of the assay. In contrast, genotyping-by-sequencing with random sampling of genomic loci via restriction enzymes or random priming has been shown to be fast and convenient but lacks the ability to target specific regions of the genome and to maintain high reproducibility across laboratories. METHODS: Here we present a first adoption of single-primer enrichment technology (SPET) which provides a highly efficient and scalable system to obtain targeted sequence-based large genotyping data sets, bridging the gaps between array-based systems and traditional sequencing-based protocols. To fully explore SPET performance, we conducted a benchmark study in ten Zea mays lines and a large-scale study of a natural black poplar population of 540 individuals with the aim of discovering polymorphisms associated with biomass-related traits. KEY RESULTS: Our results showed the ability of this technology to provide dense genotype information on a customized panel of selected polymorphisms, while yielding hundreds of thousands of untargeted variable sites. This provided an ideal resource for association analysis of natural populations harbouring unexplored allelic diversities and structure such as in black poplar. CONCLUSION: The improvement of sequencing throughput and the development of efficient library preparation methods has made it feasible to carry out targeted genotyping-by-sequencing experiments cost-competitively with either random complexity reduction systems or traditional array-based platforms, while maintaining the key advantages of both technologies.


Asunto(s)
Populus , Zea mays , Benchmarking , Genotipo , Técnicas de Genotipaje , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
12.
Food Microbiol ; 79: 123-131, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30621867

RESUMEN

The microbiota of different types of Italian high-moisture Mozzarella cheese produced using cow or buffalo milk, acidified with natural or selected cultures, and sampled at the dairy or at the mass market, was evaluated using a Next Generation Sequencing approach, in order to identify possible drivers of the bacterial diversity. Cow Mozzarella and buffalo Mozzarella acidified with commercial cultures were dominated by Streptococcus thermophilus, while buffalo samples acidified with natural whey cultures showed similar prevalence of L. delbrueckii subsp. bulgaricus, L. helveticus and S. thermophilus. Moreover, several species of non-starter lactic acid bacteria were frequently detected. The diversity in cow Mozzarella microbiota was much higher than that of water buffalo samples. Cluster analysis clearly separated cow's cheeses from buffalo's ones, the former having a higher prevalence of psychrophilic taxa, and the latter of Lactobacillus and Streptococcus. A higher prevalence of psychrophilic species and potential spoilers was observed in samples collected at the mass retail, suggesting that longer exposures to cooling temperatures and longer production-to-consumption times could significantly affect microbiota diversity. Our results could help in detecting some kind of thermal abuse during the production or storage of mozzarella cheese.


Asunto(s)
Bacterias/aislamiento & purificación , Queso/microbiología , Microbiología de Alimentos , Microbiota/genética , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Búfalos , Bovinos , Queso/análisis , Análisis por Conglomerados , ADN Bacteriano/genética , Metagenómica , Leche/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Mol Biol Evol ; 33(10): 2706-19, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27499133

RESUMEN

Many recent studies have emphasized the important role of structural variation (SV) in determining human genetic and phenotypic variation. In plants, studies aimed at elucidating the extent of SV are still in their infancy. Evidence has indicated a high presence and an active role of SV in driving plant genome evolution in different plant species.With the aim of characterizing the size and the composition of the poplar pan-genome, we performed a genome-wide analysis of structural variation in three intercrossable poplar species: Populus nigra, Populus deltoides, and Populus trichocarpa We detected a total of 7,889 deletions and 10,586 insertions relative to the P. trichocarpa reference genome, covering respectively 33.2 Mb and 62.9 Mb of genomic sequence, and 3,230 genes affected by copy number variation (CNV). The majority of the detected variants are inter-specific in agreement with a recent origin following separation of species.Insertions and deletions (INDELs) were preferentially located in low-gene density regions of the poplar genome and were, for the majority, associated with the activity of transposable elements. Genes affected by SV showed lower-than-average expression levels and higher levels of dN/dS, suggesting that they are subject to relaxed selective pressure or correspond to pseudogenes.Functional annotation of genes affected by INDELs showed over-representation of categories associated with transposable elements activity, while genes affected by genic CNVs showed enrichment in categories related to resistance to stress and pathogens. This study provides a genome-wide catalogue of SV and the first insight on functional and structural properties of the poplar pan-genome.


Asunto(s)
Populus/genética , Variaciones en el Número de Copia de ADN , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genómica , Mutación INDEL , Relación Estructura-Actividad
14.
Mycorrhiza ; 27(5): 417-430, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28101667

RESUMEN

Grapevine, cultivated for both fruit and beverage production, represents one of the most economically important fruit crops worldwide. With the aim of better understanding how grape roots respond to beneficial microbes, a transcriptome sequencing experiment has been performed to evaluate the impact of a single arbuscular mycorrhizal (AM) fungal species (Funneliformis mosseae) versus a mixed inoculum containing a bacterial and fungal consortium, including different AM species, on Richter 110 rootstock. Results showed that the impact of a single AM fungus and of a complex microbial inoculum on the grapevine transcriptome differed. After 3 months, roots exclusively were colonized after the F. mosseae treatment and several AM marker genes were found to be upregulated. The mixed inoculum led only to traces of colonization by AM fungi, but elicited an important transcriptional regulation. Additionally, the expression of genes belonging to categories such as nutrient transport, transcription factors, and cell wall-related genes was significantly altered in both treatments, but the exact genes affected differed in the two conditions. These findings advance our understanding about the impact of soil beneficial microbes on the root system of a woody plant, also offering the basis for novel approaches in grapevine cultivation.


Asunto(s)
Micorrizas/fisiología , Raíces de Plantas/metabolismo , Transcriptoma , Vitis/microbiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/microbiología , Simbiosis , Vitis/metabolismo
15.
Genet Sel Evol ; 47: 64, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26272467

RESUMEN

BACKGROUND: Merino and Merino-derived sheep breeds have been widely distributed across the world, both as purebred and admixed populations. They represent an economically and historically important genetic resource which over time has been used as the basis for the development of new breeds. In order to examine the genetic influence of Merino in the context of a global collection of domestic sheep breeds, we analyzed genotype data that were obtained with the OvineSNP50 BeadChip (Illumina) for 671 individuals from 37 populations, including a subset of breeds from the Sheep HapMap dataset. RESULTS: Based on a multi-dimensional scaling analysis, we highlighted four main clusters in this dataset, which corresponded to wild sheep, mouflon, primitive North European breeds and modern sheep (including Merino), respectively. The neighbor-network analysis further differentiated North-European and Mediterranean domestic breeds, with subclusters of Merino and Merino-derived breeds, other Spanish breeds and other Italian breeds. Model-based clustering, migration analysis and haplotype sharing indicated that genetic exchange occurred between archaic populations and also that a more recent Merino-mediated gene flow to several Merino-derived populations around the world took place. The close relationship between Spanish Merino and other Spanish breeds was consistent with an Iberian origin for the Merino breed, with possible earlier contributions from other Mediterranean stocks. The Merino populations from Australia, New Zealand and China were clearly separated from their European ancestors. We observed a genetic substructuring in the Spanish Merino population, which reflects recent herd management practices. CONCLUSIONS: Our data suggest that intensive gene flow, founder effects and geographic isolation are the main factors that determined the genetic makeup of current Merino and Merino-derived breeds. To explain how the current Merino and Merino-derived breeds were obtained, we propose a scenario that includes several consecutive migrations of sheep populations that may serve as working hypotheses for subsequent studies.


Asunto(s)
Polimorfismo de Nucleótido Simple , Selección Artificial/genética , Ovinos/clasificación , Ovinos/genética , Animales , Australia , China , Europa (Continente) , Efecto Fundador , Flujo Génico , Estudio de Asociación del Genoma Completo , Nueva Zelanda , Filogeografía , Dinámica Poblacional
16.
Genet Epidemiol ; 37(2): 205-13, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23307621

RESUMEN

Biological plausibility and other prior information could help select genome-wide association (GWA) findings for further follow-up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts' opinions and empirical evidence to estimate the relative importance of 15 types of information at the single-nucleotide polymorphism (SNP) and gene levels. Opinions were elicited from 10 experts using a two-round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNPs established as being associated with seven disease traits through GWA meta-analysis and independent replication, with the corresponding frequency in a randomly selected set of SNPs. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta-analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.


Asunto(s)
Estudios de Seguimiento , Investigación Genética , Polimorfismo de Nucleótido Simple , Biología Computacional/métodos , Estudio de Asociación del Genoma Completo , Humanos , Metaanálisis como Asunto , Probabilidad
17.
Genet Epidemiol ; 37(2): 214-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23280596

RESUMEN

Prioritization is the process whereby a set of possible candidate genes or SNPs is ranked so that the most promising can be taken forward into further studies. In a genome-wide association study, prioritization is usually based on the P-values alone, but researchers sometimes take account of external annotation information about the SNPs such as whether the SNP lies close to a good candidate gene. Using external information in this way is inherently subjective and is often not formalized, making the analysis difficult to reproduce. Building on previous work that has identified 14 important types of external information, we present an approximate Bayesian analysis that produces an estimate of the probability of association. The calculation combines four sources of information: the genome-wide data, SNP information derived from bioinformatics databases, empirical SNP weights, and the researchers' subjective prior opinions. The calculation is fast enough that it can be applied to millions of SNPS and although it does rely on subjective judgments, those judgments are made explicit so that the final SNP selection can be reproduced. We show that the resulting probability of association is intuitively more appealing than the P-value because it is easier to interpret and it makes allowance for the power of the study. We illustrate the use of the probability of association for SNP prioritization by applying it to a meta-analysis of kidney function genome-wide association studies and demonstrate that SNP selection performs better using the probability of association compared with P-values alone.


Asunto(s)
Teorema de Bayes , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Bases de Datos Genéticas , Humanos , Riñón/fisiología , Metaanálisis como Asunto , Modelos Genéticos , Probabilidad
18.
Hum Mol Genet ; 20(6): 1232-40, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21208937

RESUMEN

The genetic determinants of variation in iron status are actively sought, but remain incompletely understood. Meta-analysis of two genome-wide association (GWA) studies and replication in three independent cohorts was performed to identify genetic loci associated in the general population with serum levels of iron and markers of iron status, including transferrin, ferritin, soluble transferrin receptor (sTfR) and sTfR-ferritin index. We identified and replicated a novel association of a common variant in the type-2 transferrin receptor (TFR2) gene with iron levels, with effect sizes highly consistent across samples. In addition, we identified and replicated an association between the HFE locus and ferritin and confirmed previously reported associations with the TF, TMPRSS6 and HFE genes. The five replicated variants were tested for association with expression levels of the corresponding genes in a publicly available data set of human liver samples, and nominally statistically significant expression differences by genotype were observed for all genes, although only rs3811647 in the TF gene survived the Bonferroni correction for multiple testing. In addition, we measured for the first time the effects of the common variant in TMPRSS6, rs4820268, on hepcidin mRNA in peripheral blood (n = 83 individuals) and on hepcidin levels in urine (n = 529) and observed an association in the same direction, though only borderline significant. These functional findings require confirmation in further studies with larger sample sizes, but they suggest that common variants in TMPRSS6 could modify the hepcidin-iron feedback loop in clinically unaffected individuals, thus making them more susceptible to imbalances of iron homeostasis.


Asunto(s)
Variación Genética , Hierro/sangre , Receptores de Transferrina/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Receptores de Transferrina/metabolismo , Adulto Joven
19.
New Phytol ; 198(3): 765-776, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23432219

RESUMEN

Next-generation (NG) sequencing in a natural population of Populus nigra revealed a mutant with a premature stop codon in the gene encoding hydroxycinnamoyl-CoA : shikimate hydroxycinnamoyl transferase1 (HCT1), an essential enzyme in lignin biosynthesis. The lignin composition of P. nigra trees homozygous for the defective allele was compared with that of heterozygous trees and trees without the defective allele. The lignin was characterized by phenolic profiling, lignin oligomer sequencing, thioacidolysis and NMR. In addition, HCT1 was heterologously expressed for activity assays and crosses were made to introduce the mutation in different genetic backgrounds. HCT1 converts p-coumaroyl-CoA into p-coumaroyl shikimate. The mutant allele, PnHCT1-Δ73, encodes a truncated protein, and trees homozygous for this recessive allele have a modified lignin composition characterized by a 17-fold increase in p-hydroxyphenyl units. Using the lignin pathway as proof of concept, we illustrated that the capture of rare defective alleles is a straightforward approach to initiate reverse genetics and accelerate tree breeding. The proposed breeding strategy, called 'breeding with rare defective alleles' (BRDA), should be widely applicable, independent of the target gene or the species.


Asunto(s)
Aciltransferasas/genética , Cruzamiento/métodos , Lignina/química , Lignina/genética , Mutación , Populus/genética , Alelos , Pared Celular/química , Pared Celular/genética , Homocigoto , Lignina/metabolismo , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Populus/química , Análisis de Secuencia de ADN/métodos , Ácido Shikímico/análogos & derivados , Ácido Shikímico/metabolismo
20.
PLoS One ; 18(7): e0288821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37459342

RESUMEN

Host age at parasites' exposure is often neglected in studies on host-parasite interactions despite the important implications for epidemiology. Here we compared the impact of the parasitic mite Varroa destructor, and the associated pathogenic virus DWV on different life stages of their host, the western honey bee Apis mellifera. The pre-imaginal stages of the honey bee proved to be more susceptible to mite parasitization and viral infection than adults. The higher viral load in mite-infested bees and DWV genotype do not appear to be the drivers of the observed difference which, instead, seems to be related to the immune-competence of the host. These results support the existence of a trade-off between immunity and growth, making the pupa, which is involved in the highly energy-demanding process of metamorphosis, more susceptible to parasites and pathogens. This may have important implications for the evolution of the parasite's virulence and in turn for honey bee health. Our results highlight the important role of host's age and life stage at exposure in epidemiological modelling. Furthermore, our study could unravel new aspects of the complex honey bee-Varroa relationship to be addressed for a sustainable management of this parasite.


Asunto(s)
Varroidae , Virosis , Animales , Abejas , Varroidae/fisiología , Interacciones Huésped-Parásitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA