Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2402082, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773891

RESUMEN

The high energy demand of the evolving world opens the door to develop more sustainable and environmentally friendly energy sources. Oxygen reduction reaction (ORR) is a promising candidate, being the 2e- pathway of great interest for the green production of hydrogen peroxide. Metal-free covalent organic frameworks (COFs) electrocatalysts present a suitable alternative to substitute the noble-metals more commonly employed in this application. However, the lability of the linkages building up the framework raises an issue for their long-term use and application in aggressive media. Herein, a stable amide-linked COF is reported through post-synthetic modification of a previously reported imine-linked COF proven to be effective as an electrocatalyst, enhancing its chemical stability and electrochemical response. It is found that after the linkage transformation, the new electrocatalyst displays a higher selectivity toward the H2O2 production (98.5%) and an enhanced turnover frequency of 0.155 s-1, which is among the bests reported to date for metal-free and COF based electrocatalysts. The results represent a promising step forward for metal-free non pyrolyzed electrocatalysts, improving their properties through post-synthetic linkage modification for long-term operation.

2.
Small ; 20(9): e2307611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863821

RESUMEN

Fullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self-assembly, and electronic structure of 2D arrays of [5,5]-C90 fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111). The results demonstrate that the shape of the molecular orbitals of the adsorbed fullertubes corresponds closely to those expected for isolated species on the grounds of density functional theory calculations. Moreover, a comparison between the electronic density profiles in the bands of the extended [5,5]-CNT and in the molecules reveals that some of the frontier orbitals of the fullertube molecules can be described as the result of the quantum confinement imposed by the hemifullerene caps to the delocalized band states in the extended CNT. The results thus provide a conceptual framework for the rational design of custom fullertube molecules and can potentially become a cornerstone in the understanding of these new carbon nanoforms.

3.
Small ; 20(22): e2309555, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155502

RESUMEN

Antiferromagnetic spintronics is a rapidly emerging field with the potential to revolutionize the way information is stored and processed. One of the key challenges in this field is the development of novel 2D antiferromagnetic materials. In this paper, the first on-surface synthesis of a Co-directed metal-organic network is reported in which the Co atoms are strongly antiferromagnetically coupled, while featuring a perpendicular magnetic anisotropy. This material is a promising candidate for future antiferromagnetic spintronic devices, as it combines the advantages of 2D and metal-organic chemistry with strong antiferromagnetic order and perpendicular magnetic anisotropy.

4.
Cladistics ; 40(1): 21-33, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37787424

RESUMEN

The owlet moths (Noctuoidea; ~43-45K described species) are one of the most ecologically diverse and speciose superfamilies of animals. Moreover, they comprise some of the world's most notorious pests of agriculture and forestry. Despite their contributions to terrestrial biodiversity and impacts on ecosystems and economies, the evolutionary history of Noctuoidea remains unclear because the superfamily lacks a statistically robust phylogenetic and temporal framework. We reconstructed the phylogeny of Noctuoidea using data from 1234 genes (946.4 kb nucleotides) obtained from the genome and transcriptome sequences of 76 species. The relationships among the six families of Noctuoidea were well resolved and consistently recovered based on both concatenation and gene coalescence approaches, supporting the following relationships: Oenosandridae + (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))). A Yule tree prior with three unlinked molecular clocks was identified as the preferred BEAST analysis using marginal-likelihood estimations. The crown age of Noctuoidea was estimated at 74.5 Ma, with most families originating before the end of the Paleogene (23 Ma). Our study provides the first statistically robust phylogenetic and temporal framework for Noctuoidea, including all families of owlet moths, based on large-scale genomic data.


Asunto(s)
Genoma Mitocondrial , Mariposas Nocturnas , Animales , Filogenia , Ecosistema , Mariposas Nocturnas/genética , Genómica
5.
Macromol Rapid Commun ; : e2400134, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689427

RESUMEN

A new quinoline-based COF (covalent organic framework), obtained by Povarov reaction, containing 2,6-diisopropylphenyl moieties as substituents over the heterocyclic ring is described for detecting Zn2+ in aqueous solution. The introduction of the mentioned bulky phenyl rings into the network favors an increase of the distance between the reticular sheets and their arrangement, obtaining a new material with an alternating AB type stacking. The new material exhibits good selectivity to detect Zn2+ by fluorescence emission in aqueous solutions up to a concentration of 1.2 × 10-4 m of the metal ion. In order to have a deeper insight into the interaction between the COF and the zinc cation, a thorough spectroscopical, microscopical, and theoretical study is also presented and discussed in this communication.

6.
Inorg Chem ; 62(28): 10928-10939, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37390357

RESUMEN

This work presents two isostructural Cu(I)-I 2-fluoropyrazine (Fpyz) luminescent and semiconducting 2D coordination polymers (CPs). Hydrothermal synthesis allows the growth of P-1 space group single crystals, whereas solvent-free synthesis produces polycrystals. Via recrystallization in acetonitrile, P21 space group single crystals are obtained. Both show a reversible luminescent response to temperature and pressure. Structure determination by single-crystal X-ray diffraction at 200 and 100 K allows us to understand their response as a function of temperature. Applying hydrostatic/uniaxial pressure or grinding also generates significant variations in their emission. The high structural flexibility of the Cu(I)-I chain is significantly linked to the corresponding alterations in structure. Remarkably, pressure can increase the conductivity by up to 3 orders of magnitude. Variations in resistivity are consistent with changes in the band gap energy. The experimental results are in agreement with the DFT calculations. These properties may allow the use of these CPs as optical pressure or temperature sensors. In addition, their behavior as a heterogeneous photocatalyst of persistent organic dyes has also been investigated.

7.
J Am Chem Soc ; 144(35): 16034-16041, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36007260

RESUMEN

The design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype H6HOTP species for conductive metal-organic frameworks to design a Co-HOTP one-atom-thick metal-organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co+2 coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.8, an in-plane easy axis of magnetization, and large magnetic anisotropy. Our simulations suggest an antiferromagnetic ground state, which is compatible with the experimental findings. Such a Co-HOTP metal-organic network exemplifies how on-surface chemistry can enable the design of field-robust antiferromagnetic materials.


Asunto(s)
Cobalto , Magnetismo , Anisotropía , Cobalto/química , Ligandos , Metales , Rayos X
8.
Small ; 18(22): e2107073, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35393751

RESUMEN

The design of lanthanide multinuclear networks is an emerging field of research due to the potential of such materials for nanomagnetism, spintronics, and quantum information. Therefore, controlling their electronic and magnetic properties is of paramount importance to tailor the envisioned functionalities. In this work, a multidisciplinary study is presented combining scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray absorption spectroscopy, X-ray linear dichroism, X-ray magnetic circular dichroism, density functional theory, and multiplet calculations, about the supramolecular assembly, electronic and magnetic properties of periodic dinuclear 2D networks based on lanthanide-pyridyl interactions on Au(111). Er- and Dy-directed assemblies feature identical structural architectures stabilized by metal-organic coordination. Notably, despite exhibiting the same +3 oxidation state, there is a shift of the energy level alignment of the unoccupied molecular orbitals between Er- and Dy-directed networks. In addition, there is a reorientation of the easy axis of magnetization and an increment of the magnetic anisotropy when the metallic center is changed from Er to Dy. Thus, the results show that it is feasible to tune the energy level alignment and magnetic anisotropy of a lanthanide-based metal-organic architecture by metal exchange, while preserving the network design.

9.
Small ; 17(35): e2102753, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34279062

RESUMEN

Taming the magnetic anisotropy of lanthanides through coordination environments is crucial to take advantage of the lanthanides properties in thermally robust nanomaterials. In this work, the electronic and magnetic properties of Dy-carboxylate metal-organic networks on Cu(111) based on an eightfold coordination between Dy and ditopic linkers are inspected. This surface science study based on scanning probe microscopy and X-ray magnetic circular dichroism, complemented with density functional theory and multiplet calculations, reveals that the magnetic anisotropy landscape of the system is complex. Surface-supported metal-organic coordination is able to induce a change in the orientation of the easy magnetization axis of the Dy coordinative centers as compared to isolated Dy atoms and Dy clusters, and significantly increases the magnetic anisotropy. Surprisingly, Dy atoms coordinated in the metallosupramolecular networks display a nearly in-plane easy magnetization axis despite the out-of-plane symmetry axis of the coordinative molecular lattice. Multiplet calculations highlight the decisive role of the metal-organic coordination, revealing that the tilted orientation is the result of a very delicate balance between the interaction of Dy with O atoms and the precise geometry of the crystal field. This study opens new avenues to tailor the magnetic anisotropy and magnetic moments of lanthanide elements on surfaces.

10.
Phys Chem Chem Phys ; 23(26): 14363-14371, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34169951

RESUMEN

The dramatic consequences that the orientation adopted by the molecular dipoles, in diverse arrays of chloroaluminum phthalocyanine (ClAlPc) on Au(111), have on the ulterior adsorption and growth of C60 are explored by means of an all scanning probe microscopy approach. The unidirectional downwards organization of the molecular dipoles at the first layer reduces charge transfer from the metal to C60. Imbalance between attractive and repulsive interactions of the fullerenes are crucial for their ordered supramolecular aggregation. The effect at the basis of such self-assembling seems to be released by the all upwards dipole orientation adopted on the ClAlPc second layer. The low electronic corrugation of the bilayer results in a higher mobility of the fullerenes which for similar coverages diffuse large distances to reach uncovered first layer regions. Density functional theory calculations corroborate the experimental observations indicating the relevance of charge transfer, potential energy surface corrugation, C60 on-surface diffusion barriers and screening. The structure of the co-adsorbed C60 and ClAlPc layers strongly depends on the deposition sequence. Phase-separation, where each molecule adopts the single-component assembly, occurs if C60 is deposited first. The present results contribute to understanding the influence of the dipolar nature of molecular layers on the electronic and structure of donor/acceptor heterojunctions, which is crucial for device design via engineering the energy level alignment at organic-organic and organic-metal interfaces.

11.
Entropy (Basel) ; 23(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34945911

RESUMEN

Typical applications of wireless sensor networks (WSN), such as in Industry 4.0 and smart cities, involves acquiring and processing large amounts of data in federated systems. Important challenges arise for machine learning algorithms in this scenario, such as reducing energy consumption and minimizing data exchange between devices in different zones. This paper introduces a novel method for accelerated training of parallel Support Vector Machines (pSVMs), based on ensembles, tailored to these kinds of problems. To achieve this, the training set is split into several Voronoi regions. These regions are small enough to permit faster parallel training of SVMs, reducing computational payload. Results from experiments comparing the proposed method with a single SVM and a standard ensemble of SVMs demonstrate that this approach can provide comparable performance while limiting the number of regions required to solve classification tasks. These advantages facilitate the development of energy-efficient policies in WSN.

12.
Angew Chem Int Ed Engl ; 60(33): 17887-17892, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34086392

RESUMEN

A new compound (1) formed by two antiparallelly disposed tetracyano thienoquinoidal units has been synthesized and studied by electrochemistry, UV/Vis-NIR, IR, EPR, and transient spectroscopy. Self-assembly of 1 on a Au(111) surface has been investigated by scanning tunneling microscopy. Experiments have been rationalized by quantum chemical calculations. 1 exhibits a unique charge distribution in its anionic form, with a gradient of charge yielding a neat molecular in-plane electric dipole momentum, which transforms out-of-plane after surface deposition due to twisted→folded conformational change and to partial charge transfer from Au(111). Intermolecular van der Waals interactions and antiparallel trapezoidal shape fitting lead to the formation of an optimal dense on Au(111) two-dimensional assembly of 1.

13.
Angew Chem Int Ed Engl ; 59(51): 23220-23227, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32761699

RESUMEN

On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures.

14.
Inorg Chem ; 58(5): 3290-3301, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30753067

RESUMEN

Direct reactions under ambient conditions between CuX (X = Br, I) and thiobenzamide (TBA) were carried out at different ratios, giving rise to the formation of a series of one-dimensional (1D) coordination polymers, (CPs) [CuI(TBA)] n (1), [Cu3I3(TBA)2] n (4), and [CuBr(TBA)] n (5), as well as two molecular complexes, [CuI(TBA)3] (2) and [Cu2I2(TBA)4]·2MeCN (3). Recrystallization of 1 and 5 yielded a series of isostructural 1D CP solvated species, [CuI(TBA)·S] n] n (1·S; S = tetrahydrofuran, acetone, methanol) and [CuBr(TBA)·S] n (5·S; S = tetrahydrofuran, acetone), respectively. Similar reactions between CuI and 1,4-dithiobenzamide (DTBA) allowed the isolation of a series of two-dimensional (2D) CPs [CuI(DTBA)·S] n (6·S; S = N, N-dimethylformamide, acetonitrile, methanol). Interestingly, 1·S and 5·S showed variable luminescence and electrical semiconductivity depending on the different solvents located in their structures. Thus, 1 and 5 could display potential application for sensing volatile organic vapors by virtue of the significant changes in their emission upon solvent exposure, even by the naked eye. Theoretical calculations have been used to rationalize these electronic properties.

15.
Phys Chem Chem Phys ; 21(20): 10402-10410, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31065632

RESUMEN

A characteristic fingerprint of atomic clusters is that their properties can vary in a non-smooth way with the cluster size N. This is illustrated herein by studying the cluster size dependence of several properties of neutral CN and cationic C+N carbon clusters: C-C bond lengths, cluster structure, intrinsic cluster stability, ionization energy, and spatial distribution of the reactivity index for charge exchange with electrophiles. Nonetheless, clusters can lose the size dependence of their properties by interaction with other chemical species, which is rationalized in this study by analyzing carbon clusters fully saturated with hydrogen to form linear alkanes, CNH2N+2. In all cases, the lowest energy structures are zigzagging linear chains, the variations of C-C bond lengths and angles with alkane size are very minor and smooth, the stability function shows practically no structure as a function of the alkane size, the ionization energies just decrease smoothly with alkane size, and the spatial distribution of the reactivity index is analogous and highly delocalized in all the alkanes. In summary, the interaction of carbon clusters with hydrogen to form alkanes quenches all the size-dependent features that the carbon clusters originally owned. The arrival at the quenching of the size effects follows an involved path. In each CNHn family with fixed N, the values of the properties of the molecules like the ionization potential, the electron affinity, and others show sizable oscillations as the number of hydrogen atoms grows from the pure carbon cluster to the alkane.

16.
J Am Chem Soc ; 140(40): 12922-12929, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30216717

RESUMEN

Schiff-condensation reactions carried out between 1,6-diaminopyrene (DAP) and the tritopical 1,3,5 benzenetricarbaldehyde (BTCA) or 2,4,6-triformylphloroglucinol (TP) ligands give rise to the formation of two-dimensional imine-based covalent-organic frameworks (COFs), named IMDEA-COF-1 and -2, respectively. These materials show dramatic layer-packing-driven fluorescence in solid state arising from the three-dimensional arrangement of the pyrene units among layers. Layer stacking within these 2D-COF materials to give either eclipsed or staggered conformations can be controlled, at an atomic level through chemical design of the building blocks used in their synthesis. Theoretical calculations have been used to rationalize the different preferential packing between both COFs. IMDEA-COF-1 shows green emission with absolute photoluminescence quantum yield of 3.5% in solid state. This material represents the first example of imine-linked 2D-COF showing emission in solid state.

17.
Chemistry ; 24(51): 13432-13436, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30006953

RESUMEN

Metal migration through a carbon chain is a versatile method for achieving remote functionalization. However, almost all known examples involve the overall net migration of alkylmetal species. Here, we report that allylrhodium species obtained from hydrorhodation of 1,3-dienes undergo chain walking toward esters, amides, or (hetero)arenes over distances of up to eight methylene units. The final, more highly conjugated allylrhodium species undergo nucleophilic allylation with aldehydes and with an imine to give Z-homoallylic alcohols and amines, respectively.

18.
Phys Chem Chem Phys ; 20(43): 27368-27374, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30357174

RESUMEN

The mass spectra of gas-phase clusters in cluster beams have a rich structure where the relative heights of the peaks compared to peaks corresponding to the clusters of neighboring sizes reveal the stability of the clusters as a function of size N. In an analysis of the published mass spectrum of carbon cluster cations CN+ with N ≤ 16 we have employed the most common descriptor of cluster stability, which is based on the comparison of the total energy of the cluster of size N with the averaged energies of clusters with sizes N + 1 and N - 1. These energies have been obtained from density functional calculations. The comparison between the stability function and the mass spectrum leaves some experimental features unexplained; in particular, the correlation with the detailed variation of the height of the mass peaks as a function of size N is not satisfactory. We then propose a novel stability descriptor which improves the features substantially, in particular the correlation with the detailed variation of the height of the mass peaks. The new stability index is based on the comparison of the atom-evaporation energy of the cluster of size N with the averaged atom-evaporation energies of clusters with sizes N + 1 and N - 1. The substantial improvement achieved is attributed to the fact that evaporation energies are quantities directly connected with the processes controlling the cluster abundances in the beam.

19.
Phys Chem Chem Phys ; 20(17): 12061-12074, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29675522

RESUMEN

Understanding the interaction of hydrogen with layered materials is crucial in the fields of sensors, catalysis, fuel cells and hydrogen storage, among others. Density functional theory, improved by the introduction of van der Waals dispersion forces, provides an efficient and practical workbench to investigate the interaction of molecular and atomic hydrogen with WS2 multilayers and nanotubes. We find that H2 physisorbs on the surface of those materials on top of W atoms, while atomic H chemisorbs on top of S atoms. In the case of nanotubes, the chemisorption strength is sensitive to the nanotube diameter. Diffusion of H2 on the surface of WS2 encounters quite small activation barriers whose magnitude helps to explain previous and new experimental results for the observed dependence of the hydrogen concentration with temperature. Intercalation of H2 between adjacent planar WS2 layers reveals an endothermic character. Intercalating H atoms is energetically favorable, but the intercalation energy does not compensate for the cost of dissociating the molecules. When H2 molecules are intercalated between the walls of a double wall nanotube, the rigid confinement induces the dissociation of the confined molecules. A remarkable result is that the presence of a full H2 monolayer adsorbed on top of the first WS2 layer of a WS2 multilayer system strongly facilitates the intercalation of H2 between WS2 layers underneath. This opens up an additional gate to intercalation processes.

20.
Carbon N Y ; 129: 837-846, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30190626

RESUMEN

While high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces. A multi-technique characterization combined with ab-initio calculations was employed to fully explain the different steps involved in the process. It was shown that, after a controlled electrochemical oxidation process, a single-atom thick metal-hydroxide layer intercalates below graphene, decoupling it from the metal substrate. This decoupling process occurs without disrupting the morphology and electronic properties of graphene. The results suggest that suitably optimized electrochemical treatments may provide effective alternatives to current transfer protocols for graphene and other 2D materials on diverse metal surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA