Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 602(7898): 623-631, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140396

RESUMEN

The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4-a cancer insertion-deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions -is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Células Germinativas , Mutagénesis , Neoplasias , Animales , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Células Germinativas/metabolismo , Humanos , Mutagénesis/genética , Mutación , Neoplasias/genética , Ribonucleótidos/genética
2.
Genes Dev ; 34(21-22): 1520-1533, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060134

RESUMEN

DNA replication is fundamental for cell proliferation in all organisms. Nonetheless, components of the replisome have been implicated in human disease, and here we report PRIM1 encoding the catalytic subunit of DNA primase as a novel disease gene. Using a variant classification agnostic approach, biallelic mutations in PRIM1 were identified in five individuals. PRIM1 protein levels were markedly reduced in patient cells, accompanied by replication fork asymmetry, increased interorigin distances, replication stress, and prolonged S-phase duration. Consequently, cell proliferation was markedly impaired, explaining the patients' extreme growth failure. Notably, phenotypic features distinct from those previously reported with DNA polymerase genes were evident, highlighting differing developmental requirements for this core replisome component that warrant future investigation.


Asunto(s)
ADN Primasa/genética , Enanismo/genética , Retardo del Crecimiento Fetal/genética , ADN Primasa/química , ADN Primasa/deficiencia , Enanismo/diagnóstico por imagen , Enanismo/patología , Femenino , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/patología , Variación Genética , Humanos , Lactante , Masculino , Linaje , Síndrome
3.
Cell ; 149(5): 1008-22, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22579044

RESUMEN

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Asunto(s)
Replicación del ADN , Embrión de Mamíferos/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Animales , Inestabilidad Cromosómica , ADN Polimerasa Dirigida por ADN/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Nature ; 559(7713): 285-289, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973717

RESUMEN

The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Edición Génica , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ribonucleótidos/genética , Animales , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Línea Celular , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Femenino , Genes BRCA1 , Genoma/genética , Células HeLa , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
PLoS Biol ; 18(12): e3001030, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320856

RESUMEN

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Prueba de COVID-19/economía , Humanos , Reacción en Cadena de la Polimerasa Multiplex/economía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/economía , SARS-CoV-2/genética
6.
J Anim Ecol ; 92(9): 1786-1801, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221666

RESUMEN

Understanding the spatial dynamics and drivers of wildlife pathogens is constrained by sampling logistics, with implications for advancing the field of landscape epidemiology and targeted allocation of management resources. However, visually apparent wildlife diseases, when combined with remote-surveillance and distribution modelling technologies, present an opportunity to overcome this landscape-scale problem. Here, we investigated dynamics and drivers of landscape-scale wildlife disease, using clinical signs of sarcoptic mange (caused by Sarcoptes scabiei) in its bare-nosed wombat (BNW; Vombatus ursinus) host. We used 53,089 camera-trap observations from over 3261 locations across the 68,401 km2 area of Tasmania, Australia, combined with landscape data and ensemble species distribution modelling (SDM). We investigated: (1) landscape variables predicted to drive habitat suitability of the host; (2) host and landscape variables associated with clinical signs of disease in the host; and (3) predicted locations and environmental conditions at greatest risk of disease occurrence, including some Bass Strait islands where BNW translocations are proposed. We showed that the Tasmanian landscape, and ecosystems therein, are nearly ubiquitously suited to BNWs. Only high mean annual precipitation reduced habitat suitability for the host. In contrast, clinical signs of sarcoptic mange disease in BNWs were widespread, but heterogeneously distributed across the landscape. Mange (which is environmentally transmitted in BNWs) was most likely to be observed in areas of increased host habitat suitability, lower annual precipitation, near sources of freshwater and where topographic roughness was minimal (e.g. human modified landscapes, such as farmland and intensive land-use areas, shrub and grass lands). Thus, a confluence of host, environmental and anthropogenic variables appear to influence the risk of environmental transmission of S. scabiei. We identified that the Bass Strait Islands are highly suitable for BNWs and predicted a mix of high and low suitability for the pathogen. This study is the largest spatial assessment of sarcoptic mange in any host species, and advances understanding of the landscape epidemiology of environmentally transmitted S. scabiei. This research illustrates how host-pathogen co-suitability can be useful for allocating management resources in the landscape.


Asunto(s)
Marsupiales , Escabiosis , Animales , Humanos , Escabiosis/epidemiología , Efectos Antropogénicos , Ecosistema , Sarcoptes scabiei , Animales Salvajes
7.
Nature ; 548(7668): 461-465, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738408

RESUMEN

DNA is strictly compartmentalized within the nucleus to prevent autoimmunity; despite this, cyclic GMP-AMP synthase (cGAS), a cytosolic sensor of double-stranded DNA, is activated in autoinflammatory disorders and by DNA damage. Precisely how cellular DNA gains access to the cytoplasm remains to be determined. Here, we report that cGAS localizes to micronuclei arising from genome instability in a mouse model of monogenic autoinflammation, after exogenous DNA damage and spontaneously in human cancer cells. Such micronuclei occur after mis-segregation of DNA during cell division and consist of chromatin surrounded by its own nuclear membrane. Breakdown of the micronuclear envelope, a process associated with chromothripsis, leads to rapid accumulation of cGAS, providing a mechanism by which self-DNA becomes exposed to the cytosol. cGAS is activated by chromatin, and consistent with a mitotic origin, micronuclei formation and the proinflammatory response following DNA damage are cell-cycle dependent. By combining live-cell laser microdissection with single cell transcriptomics, we establish that interferon-stimulated gene expression is induced in micronucleated cells. We therefore conclude that micronuclei represent an important source of immunostimulatory DNA. As micronuclei formed from lagging chromosomes also activate this pathway, recognition of micronuclei by cGAS may act as a cell-intrinsic immune surveillance mechanism that detects a range of neoplasia-inducing processes.


Asunto(s)
Inestabilidad Genómica/inmunología , Inmunidad Innata/genética , Micronúcleos con Defecto Cromosómico , Nucleotidiltransferasas/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Cromatina/metabolismo , Cromotripsis , Citoplasma/enzimología , Citoplasma/genética , ADN/metabolismo , Daño del ADN , Femenino , Inestabilidad Genómica/genética , Humanos , Inflamación/enzimología , Inflamación/genética , Rayos Láser , Masculino , Ratones , Microdisección , Mitosis , Membrana Nuclear/metabolismo , Nucleotidiltransferasas/genética , Análisis de la Célula Individual , Transcriptoma
9.
Mol Microbiol ; 116(3): 909-925, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181784

RESUMEN

The Escherichia coli dnaE gene encodes the α-catalytic subunit (pol IIIα) of DNA polymerase III, the cell's main replicase. Like all high-fidelity DNA polymerases, pol III possesses stringent base and sugar discrimination. The latter is mediated by a so-called "steric gate" residue in the active site of the polymerase that physically clashes with the 2'-OH of an incoming ribonucleotide. Our structural modeling data suggest that H760 is the steric gate residue in E.coli pol IIIα. To understand how H760 and the adjacent S759 residue help maintain genome stability, we generated DNA fragments in which the codons for H760 or S759 were systematically changed to the other nineteen naturally occurring amino acids and attempted to clone them into a plasmid expressing pol III core (α-θ-ε subunits). Of the possible 38 mutants, only nine were successfully sub-cloned: three with substitutions at H760 and 6 with substitutions at S759. Three of the plasmid-encoded alleles, S759C, S759N, and S759T, exhibited mild to moderate mutator activity and were moved onto the chromosome for further characterization. These studies revealed altered phenotypes regarding deoxyribonucleotide base selectivity and ribonucleotide discrimination. We believe that these are the first dnaE mutants with such phenotypes to be reported in the literature.


Asunto(s)
Dominio Catalítico , ADN Polimerasa III/química , ADN Polimerasa III/genética , ADN/química , ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Alelos , Sustitución de Aminoácidos , Reparación de la Incompatibilidad de ADN , ADN Polimerasa III/metabolismo , Replicación del ADN , Desoxirribonucleótidos/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Inestabilidad Genómica , Modelos Moleculares , Mutación , Fenotipo , Ribonucleótidos/química
10.
J Intellect Disabil Res ; 66(4): 332-352, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35194869

RESUMEN

BACKGROUND: A rights-based agenda, informed by the UNCRPD, that advocates person-centredness, inclusion, empowerment and self-determination is shaping service provision to people with intellectual disability (ID). Listening to their perspectives is fundamental to meeting these goals. However, communication with people with severe/profound ID is challenging and difficult. Therefore, this study aims to generate a theory that explains how people communicate with and understand each other in these interactions. METHODS: Classic grounded theory (CGT) methodology was used as it recognises that knowledge can be captured rather than interpreted. According to CGT, capturing rather than interpreting experiences strengthens findings, particularly in relation to participants with severe/profound ID. Concurrent theoretical sampling, data collection and analysis were undertaken. Twenty-two individuals participated in the study: 3 people with severe/profound ID and 19 people with whom they interact. Data were collected over a 9-month period and involved video recordings, field notes, individual and group interviews. Data were analysed using CGT methods of coding, constant comparison and memoing. RESULTS: The Theory of Reconciling Communication Repertoires was generated. Nurturing a sense of belonging emerged as the main concern and core category that is resolved by reconciling communication repertoires. A communication repertoire refers to the cache of communication skills a person has available to them. To reconcile repertoires is to harmonise or make them compatible with each other in order to communicate. Interactions are navigated through five stages: motivation to interact, connection establishment, reciprocally engaging, navigating understanding and confusion resolution. CONCLUSIONS: The Theory of Reconciling Communication Repertoires explains how interactions involving people with severe/profound ID are navigated. While this is a substantive rather than formal theory, it has the potential to inform practice, policy, management, education and research as it outlines how communication with people with severe/profound ID can take place to design, inform and plan person-centred care.


Asunto(s)
Discapacidad Intelectual , Comunicación , Teoría Fundamentada , Humanos , Grabación en Video
11.
Nature ; 518(7540): 502-506, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25624100

RESUMEN

The origin of mutations is central to understanding evolution and of key relevance to health. Variation occurs non-randomly across the genome, and mechanisms for this remain to be defined. Here we report that the 5' ends of Okazaki fragments have significantly increased levels of nucleotide substitution, indicating a replicative origin for such mutations. Using a novel method, emRiboSeq, we map the genome-wide contribution of polymerases, and show that despite Okazaki fragment processing, DNA synthesized by error-prone polymerase-α (Pol-α) is retained in vivo, comprising approximately 1.5% of the mature genome. We propose that DNA-binding proteins that rapidly re-associate post-replication act as partial barriers to Pol-δ-mediated displacement of Pol-α-synthesized DNA, resulting in incorporation of such Pol-α tracts and increased mutation rates at specific sites. We observe a mutational cost to chromatin and regulatory protein binding, resulting in mutation hotspots at regulatory elements, with signatures of this process detectable in both yeast and humans.


Asunto(s)
Replicación del ADN/genética , ADN/biosíntesis , ADN/genética , Genoma Humano/genética , Mutación/genética , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , Secuencia Conservada/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Humanos , Modelos Biológicos , Mutagénesis/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo
12.
J Intellect Disabil ; 25(1): 131-145, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31104540

RESUMEN

BACKGROUND: Women with an intellectual disability (ID) have a similar risk of developing breast cancer as women in the general population yet present with later stage breast cancers, which have poorer outcomes. AIM: To identify whether there is a need to develop a breast cancer awareness intervention for women with an ID. METHODS: Interventions aimed at increasing cancer awareness and breast cancer awareness for people with an ID were identified and critically appraised. RESULTS: Five interventions to increase cancer awareness or breast cancer awareness in people with an ID were identified. CONCLUSION: The review highlighted the paucity of theoretically underpinned breast cancer awareness interventions specifically aimed at women with an ID. Facilitating breast cancer awareness for women with an ID could potentially lead to earlier presentation of potential symptoms of breast cancer, earlier treatment, better prognosis and ultimately, improved survival. This article establishes that there is a need for an intervention underpinned by theory to increase breast cancer awareness in women with an ID.


Asunto(s)
Neoplasias de la Mama , Discapacidad Intelectual , Neoplasias de la Mama/terapia , Femenino , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/terapia
13.
Gastroenterology ; 156(1): 145-159.e19, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273559

RESUMEN

BACKGROUND & AIMS: RNase H2 is a holoenzyme, composed of 3 subunits (ribonuclease H2 subunits A, B, and C), that cleaves RNA:DNA hybrids and removes mis-incorporated ribonucleotides from genomic DNA through ribonucleotide excision repair. Ribonucleotide incorporation by eukaryotic DNA polymerases occurs during every round of genome duplication and produces the most frequent type of naturally occurring DNA lesion. We investigated whether intestinal epithelial proliferation requires RNase H2 function and whether RNase H2 activity is disrupted during intestinal carcinogenesis. METHODS: We generated mice with epithelial-specific deletion of ribonuclease H2 subunit B (H2bΔIEC) and mice that also had deletion of tumor-suppressor protein p53 (H2b/p53ΔIEC); we compared phenotypes with those of littermate H2bfl/fl or H2b/p53fl/fl (control) mice at young and old ages. Intestinal tissues were collected and analyzed by histology. We isolated epithelial cells, generated intestinal organoids, and performed RNA sequence analyses. Mutation signatures of spontaneous tumors from H2b/p53ΔIEC mice were characterized by exome sequencing. We collected colorectal tumor specimens from 467 patients, measured levels of ribonuclease H2 subunit B, and associated these with patient survival times and transcriptome data. RESULTS: The H2bΔIEC mice had DNA damage to intestinal epithelial cells and proliferative exhaustion of the intestinal stem cell compartment compared with controls and H2b/p53ΔIEC mice. However, H2b/p53ΔIEC mice spontaneously developed small intestine and colon carcinomas. DNA from these tumors contained T>G base substitutions at GTG trinucleotides. Analyses of transcriptomes of human colorectal tumors associated lower levels of RNase H2 with shorter survival times. CONCLUSIONS: In analyses of mice with disruption of the ribonuclease H2 subunit B gene and colorectal tumors from patients, we provide evidence that RNase H2 functions as a colorectal tumor suppressor. H2b/p53ΔIEC mice can be used to study the roles of RNase H2 in tissue-specific carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Células Epiteliales/enzimología , Inestabilidad Genómica , Neoplasias Intestinales/prevención & control , Intestino Delgado/enzimología , Ribonucleasa H/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colitis/inducido químicamente , Colitis/enzimología , Colitis/genética , Colitis/patología , Daño del ADN , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Intestinales/enzimología , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestino Delgado/patología , Masculino , Ratones Noqueados , Fenotipo , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
14.
Phys Rev Lett ; 124(2): 020401, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-32004025

RESUMEN

The theory of angular momentum connects physical rotations and quantum spins together at a fundamental level. Physical rotation of a quantum system will therefore affect fundamental quantum operations, such as spin rotations in projective Hilbert space, but these effects are subtle and experimentally challenging to observe due to the fragility of quantum coherence. We report on a measurement of a single-electron-spin phase shift arising directly from physical rotation, without transduction through magnetic fields or ancillary spins. This phase shift is observed by measuring the phase difference between a microwave driving field and a rotating two-level electron spin system, and it can accumulate nonlinearly in time. We detect the nonlinear phase using spin-echo interferometry of a single nitrogen-vacancy qubit in a diamond rotating at 200 000 rpm. Our measurements demonstrate the fundamental connections between spin, physical rotation, and quantum phase, and they will be applicable in schemes where the rotational degree of freedom of a quantum system is not fixed, such as spin-based rotation sensors and trapped nanoparticles containing spins.

15.
Hum Mutat ; 40(8): 1063-1070, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31045292

RESUMEN

Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.


Asunto(s)
ADN Helicasas/genética , Enanismo/genética , Variación Genética , Microcefalia/genética , Adolescente , Alelos , ADN Helicasas/química , Femenino , Predisposición Genética a la Enfermedad , Humanos , Intrones , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutagénesis Insercional , Mutación Missense , Polimorfismo de Nucleótido Simple
16.
Lab Invest ; 99(5): 722-732, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659272

RESUMEN

Immunohistochemistry and fluorescence in situ hybridization are the two standard methods for human epidermal growth factor receptor 2 (HER2) assessment. However, they have severe limitations to assess quantitatively intratumoral heterogeneity (ITH) when multiple subclones of tumor cells co-exist. We develop here a high-content, quantitative analysis of breast cancer tissues based on microfluidic experimentation and image processing, to characterize both HER2 protein overexpression and HER2 gene amplification at the cellular level. The technique consists of performing sequential steps on the same tissue slide: an immunofluorescence (IF) assay using a microfluidic protocol, an elution step for removing the IF staining agents, a standard FISH staining protocol, followed by automated quantitative cell-by-cell image processing. Moreover, ITH is accurately detected in both cluster and mosaic form using an analysis of spatial association and a mathematical model that allows discriminating true heterogeneity from artifacts due to the use of thin tissue sections. This study paves the way to evaluate ITH with high accuracy and content while requiring standard staining methods.


Asunto(s)
Neoplasias de la Mama/genética , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Receptor ErbB-2/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Hibridación Fluorescente in Situ/métodos , Técnicas Analíticas Microfluídicas/métodos , Receptor ErbB-2/metabolismo , Reproducibilidad de los Resultados
17.
Phys Rev Lett ; 122(5): 050401, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30821994

RESUMEN

The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary states in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.

18.
Nucleic Acids Res ; 45(8): e59, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28077562

RESUMEN

Single molecule quantification assays provide the ultimate sensitivity and precision for molecular analysis. However, most digital analysis techniques, i.e. droplet PCR, require sophisticated and expensive instrumentation for molecule compartmentalization, amplification and analysis. Rolling circle amplification (RCA) provides a simpler means for digital analysis. Nevertheless, the sensitivity of RCA assays has until now been limited by inefficient detection methods. We have developed a simple microfluidic strategy for enrichment of RCA products into a single field of view of a low magnification fluorescent sensor, enabling ultra-sensitive digital quantification of nucleic acids over a dynamic range from 1.2 aM to 190 fM. We prove the broad applicability of our analysis platform by demonstrating 5-plex detection of as little as ∼1 pg (∼300 genome copies) of pathogenic DNA with simultaneous antibiotic resistance marker detection, and the analysis of rare oncogene mutations. Our method is simpler, more cost-effective and faster than other digital analysis techniques and provides the means to implement digital analysis in any laboratory equipped with a standard fluorescent microscope.


Asunto(s)
Técnicas Biosensibles , ADN Circular/análisis , Farmacorresistencia Microbiana/genética , Dispositivos Laboratorio en un Chip , Microscopía Fluorescente/métodos , Reacción en Cadena de la Polimerasa/métodos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Carbocianinas/química , Sondas de ADN/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , Dimetilpolisiloxanos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoresceína-5-Isotiocianato/química , Colorantes Fluorescentes/química , Expresión Génica , Humanos , Meticilina/farmacología , Microscopía Fluorescente/economía , Microscopía Fluorescente/instrumentación , Mutación , Oligonucleótidos/metabolismo , Reacción en Cadena de la Polimerasa/economía , Reacción en Cadena de la Polimerasa/instrumentación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
19.
Nucleic Acids Res ; 45(22): 12808-12815, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29106596

RESUMEN

All DNA polymerases misincorporate ribonucleotides despite their preference for deoxyribonucleotides, and analysis of cultured cells indicates that mammalian mitochondrial DNA (mtDNA) tolerates such replication errors. However, it is not clear to what extent misincorporation occurs in tissues, or whether this plays a role in human disease. Here, we show that mtDNA of solid tissues contains many more embedded ribonucleotides than that of cultured cells, consistent with the high ratio of ribonucleotide to deoxynucleotide triphosphates in tissues, and that riboadenosines account for three-quarters of them. The pattern of embedded ribonucleotides changes in a mouse model of Mpv17 deficiency, which displays a marked increase in rGMPs in mtDNA. However, while the mitochondrial dGTP is low in the Mpv17-/- liver, the brain shows no change in the overall dGTP pool, leading us to suggest that Mpv17 determines the local concentration or quality of dGTP. Embedded rGMPs are expected to distort the mtDNA and impede its replication, and elevated rGMP incorporation is associated with early-onset mtDNA depletion in liver and late-onset multiple deletions in brain of Mpv17-/- mice. These findings suggest aberrant ribonucleotide incorporation is a primary mtDNA abnormality that can result in pathology.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Ribonucleótidos/genética , Eliminación de Secuencia , Animales , Secuencia de Bases , Encéfalo/metabolismo , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Hígado/metabolismo , Proteínas de la Membrana/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/deficiencia
20.
Chem Soc Rev ; 47(4): 1391-1458, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29308474

RESUMEN

This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentación , Microfluídica/métodos , Óptica y Fotónica/métodos , Animales , Línea Celular , Simulación por Computador , Técnicas Electroquímicas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Microtecnología/métodos , Ácidos Nucleicos/análisis , Proteínas/análisis , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA