Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hum Genet ; 107(2): 293-310, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32707087

RESUMEN

We identified ten persons in six consanguineous families with distal arthrogryposis (DA) who had congenital contractures, scoliosis, and short stature. Exome sequencing revealed that each affected person was homozygous for one of two different rare variants (c.470G>T [p.Cys157Phe] or c.469T>C [p.Cys157Arg]) affecting the same residue of myosin light chain, phosphorylatable, fast skeletal muscle (MYLPF). In a seventh family, a c.487G>A (p.Gly163Ser) variant in MYLPF arose de novo in a father, who transmitted it to his son. In an eighth family comprised of seven individuals with dominantly inherited DA, a c.98C>T (p.Ala33Val) variant segregated in all four persons tested. Variants in MYLPF underlie both dominant and recessively inherited DA. Mylpf protein models suggest that the residues associated with dominant DA interact with myosin whereas the residues altered in families with recessive DA only indirectly impair this interaction. Pathological and histological exam of a foot amputated from an affected child revealed complete absence of skeletal muscle (i.e., segmental amyoplasia). To investigate the mechanism for this finding, we generated an animal model for partial MYLPF impairment by knocking out zebrafish mylpfa. The mylpfa mutant had reduced trunk contractile force and complete pectoral fin paralysis, demonstrating that mylpf impairment most severely affects limb movement. mylpfa mutant muscle weakness was most pronounced in an appendicular muscle and was explained by reduced myosin activity and fiber degeneration. Collectively, our findings demonstrate that partial loss of MYLPF function can lead to congenital contractures, likely as a result of degeneration of skeletal muscle in the distal limb.


Asunto(s)
Artrogriposis/genética , Músculo Esquelético/patología , Anomalías Musculoesqueléticas/genética , Mutación/genética , Cadenas Ligeras de Miosina/genética , Adolescente , Secuencia de Aminoácidos , Animales , Niño , Contractura/genética , Extremidades/patología , Femenino , Humanos , Masculino , Miosinas/genética , Linaje , Adulto Joven , Pez Cebra/genética
2.
J Mol Cell Cardiol ; 156: 7-19, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33766524

RESUMEN

BACKGROUND: Heart failure (HF) is associated with highly significant morbidity, mortality, and health care costs. Despite the significant advances in therapies and prevention, HF remains associated with poor clinical outcomes. Understanding the contractile force and kinetic changes at the level of cardiac muscle during end-stage HF in consideration of underlying etiology would be beneficial in developing targeted therapies that can help improve cardiac performance. OBJECTIVE: Investigate the impact of the primary etiology of HF (ischemic or non-ischemic) on left ventricular (LV) human myocardium force and kinetics of contraction and relaxation under near-physiological conditions. METHODS AND RESULTS: Contractile and kinetic parameters were assessed in LV intact trabeculae isolated from control non-failing (NF; n = 58) and end-stage failing ischemic (FI; n = 16) and non-ischemic (FNI; n = 38) human myocardium under baseline conditions, length-dependent activation, frequency-dependent activation, and response to the ß-adrenergic stimulation. At baseline, there were no significant differences in contractile force between the three groups; however, kinetics were impaired in failing myocardium with significant slowing down of relaxation kinetics in FNI compared to NF myocardium. Length-dependent activation was preserved and virtually identical in all groups. Frequency-dependent activation was clearly seen in NF myocardium (positive force frequency relationship [FFR]), while significantly impaired in both FI and FNI myocardium (negative FFR). Likewise, ß-adrenergic regulation of contraction was significantly impaired in both HF groups. CONCLUSIONS: End-stage failing myocardium exhibited impaired kinetics under baseline conditions as well as with the three contractile regulatory mechanisms. The pattern of these kinetic impairments in relation to NF myocardium was mainly impacted by etiology with a marked slowing down of kinetics in FNI myocardium. These findings suggest that not only force development, but also kinetics should be considered as a therapeutic target for improving cardiac performance and thus treatment of HF.


Asunto(s)
Susceptibilidad a Enfermedades , Insuficiencia Cardíaca Diastólica/etiología , Insuficiencia Cardíaca Diastólica/fisiopatología , Miocardio/metabolismo , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/metabolismo , Biomarcadores , Análisis de Datos , Femenino , Insuficiencia Cardíaca , Insuficiencia Cardíaca Diastólica/diagnóstico , Insuficiencia Cardíaca Diastólica/tratamiento farmacológico , Pruebas de Función Cardíaca , Frecuencia Cardíaca , Humanos , Isoproterenol/farmacología , Isoproterenol/uso terapéutico , Cinética , Masculino , Contracción Miocárdica , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/tratamiento farmacológico
3.
Dev Biol ; 462(1): 85-100, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165147

RESUMEN

Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.


Asunto(s)
Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Animales , Fusión Celular , Células Gigantes/metabolismo , Molécula B de Adhesión de Unión/genética , Molécula B de Adhesión de Unión/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Mioblastos/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
J Mol Cell Cardiol ; 121: 81-93, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29981798

RESUMEN

BACKGROUND: In patients with end-stage heart failure, the primary etiology often originates in the left ventricle, and eventually the contractile function of the right ventricle (RV) also becomes compromised. RV tissue-level deficits in contractile force and/or kinetics need quantification to understand involvement in ischemic and non-ischemic failing human myocardium. METHODS AND RESULTS: The human population suffering from heart failure is diverse, requiring many subjects to be studied in order to perform an adequately powered statistical analysis. From 2009-present we assessed live tissue-level contractile force and kinetics in isolated myocardial RV trabeculae from 44 non-failing and 41 failing human hearts. At 1 Hz stimulation rate (in vivo resting state) the developed active force was not different in non-failing compared to failing ischemic nor non-ischemic failing trabeculae. In sharp contrast, the kinetics of relaxation were significantly impacted by disease, with 50% relaxation time being significantly shorter in non-failing vs. non-ischemic failing, while the latter was still significantly shorter than ischemic failing. Gender did not significantly impact kinetics. Length-dependent activation was not impacted. Although baseline force was not impacted, contractile reserve was critically blunted. The force-frequency relation was positive in non-failing myocardium, but negative in both ischemic and non-ischemic myocardium, while the ß-adrenergic response to isoproterenol was depressed in both pathologies. CONCLUSIONS: Force development at resting heart rate is not impacted by cardiac pathology, but kinetics are impaired and the magnitude of the impairment depends on the underlying etiology. Focusing on restoration of myocardial kinetics will likely have greater therapeutic potential than targeting force of contraction.


Asunto(s)
Insuficiencia Cardíaca/terapia , Ventrículos Cardíacos/fisiopatología , Corazón/fisiopatología , Miocardio/patología , Adulto , Anciano , Animales , Femenino , Insuficiencia Cardíaca/fisiopatología , Trasplante de Corazón , Humanos , Masculino , Persona de Mediana Edad , Contracción Miocárdica/fisiología , Terapia por Relajación , Donantes de Tejidos
6.
J Appl Physiol (1985) ; 119(7): 799-806, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26251513

RESUMEN

The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼ 300 mN/mm(2), which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input.


Asunto(s)
Contracción Muscular/genética , Desarrollo de Músculos/genética , Músculo Esquelético/fisiología , Pez Cebra/fisiología , Anatomía Transversal , Animales , Larva/fisiología , Músculo Esquelético/anatomía & histología , ARN/biosíntesis , Proteínas de Unión al ARN/fisiología , Proteínas de Pez Cebra/fisiología
7.
Cancer Discov ; 4(12): 1418-29, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25252692

RESUMEN

UNLABELLED: NRAS mutation at codons 12, 13, or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an NrasQ61R knock-in allele to similarly designed KrasG12D and NrasG12D alleles. With concomitant p16INK4a inactivation, KrasG12D or NrasQ61R expression efficiently promoted melanoma in vivo, whereas NrasG12D did not. In addition, NrasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of NrasQ61R and NrasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, NrasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity, and increased stability when compared with NrasG12D. This work identifies a faithful model of human NRAS-mutant melanoma, and suggests that the increased melanomagenecity of NrasQ61R over NrasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. SIGNIFICANCE: This work explains the curious predominance in human melanoma of mutations of codon 61 of NRAS over other oncogenic NRAS mutations. Using conditional "knock-in" mouse models, we show that physiologic expression of NRASQ61R, but not NRASG12D, drives melanoma formation.


Asunto(s)
Transformación Celular Neoplásica/genética , Codón , Genes ras , Melanoma/genética , Mutación , Quinasas de la Proteína-Quinasa Activada por el AMP , Alelos , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Eliminación de Gen , Orden Génico , Sitios Genéticos , Genotipo , Guanosina Trifosfato/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/mortalidad , Melanoma/patología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Metástasis de la Neoplasia , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA