Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010406, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121852

RESUMEN

Wolbachia are widespread maternally-transmitted bacteria of arthropods that often spread by manipulating their host's reproduction through cytoplasmic incompatibility (CI). Their invasive potential is currently being harnessed in field trials aiming to control mosquito-borne diseases. Wolbachia genomes commonly harbour prophage regions encoding the cif genes which confer their ability to induce CI. Recently, a plasmid-like element was discovered in wPip, a Wolbachia strain infecting Culex mosquitoes; however, it is unclear how common such extra-chromosomal elements are in Wolbachia. Here we sequenced the complete genome of wAlbA, a strain of the symbiont found in Aedes albopictus, after eliminating the co-infecting and higher density wAlbB strain that previously made sequencing of wAlbA challenging. We show that wAlbA is associated with two new plasmids and identified additional Wolbachia plasmids and related chromosomal islands in over 20% of publicly available Wolbachia genome datasets. These plasmids encode a variety of accessory genes, including several phage-like DNA packaging genes as well as genes potentially contributing to host-symbiont interactions. In particular, we recovered divergent homologues of the cif genes in both Wolbachia- and Rickettsia-associated plasmids. Our results indicate that plasmids are common in Wolbachia and raise fundamental questions around their role in symbiosis. In addition, our comparative analysis provides useful information for the future development of genetic tools to manipulate and study Wolbachia symbionts.


Asunto(s)
Aedes , Wolbachia , Aedes/genética , Animales , Plásmidos/genética , Profagos/genética , Simbiosis/genética , Wolbachia/genética
2.
Rev Infirm ; 73(298): 22-23, 2024 Feb.
Artículo en Francés | MEDLINE | ID: mdl-38346825

RESUMEN

Preventing and protecting the population against sexually transmitted infections (STIs) is a key focus of sexual health policies. Currently, there are a number of preventive strategies in place to protect users, particularly those in the lesbian, gay, bisexual, trans, queer and intersex (LGBTI) community, from the risk of contracting STIs. In this article, we will outline the current prevention measures available to help those concerned.


Asunto(s)
Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Femenino , Humanos , Enfermedades de Transmisión Sexual/prevención & control
3.
Inorg Chem ; 62(19): 7173-7185, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37133506

RESUMEN

Although uranium-cerium dioxides are frequently used as a surrogate material for (U,Pu)O2-δ nuclear fuels, there is currently no reliable data regarding the oxygen stoichiometry and redox speciation of the cations in such samples. In order to fill this gap, this manuscript details a synchrotron study of highly homogeneous (U,Ce)O2±Î´ sintered samples prepared by a wet-chemistry route. HERFD-XANES spectroscopy led to determining accurately the O/M ratios (with M = U + Ce). Under a reducing atmosphere (pO2 ≈ 6 × 10-29 atm at 650 °C), the oxides were found to be close to O/M = 2.00, while the O/M ratio varied with the sintering conditions under argon (pO2 ≈ 3 × 10-6 atm at 650 °C). They globally appeared to be hyperstoichiometric (i.e., O/M > 2.00) with the departure from the dioxide stoichiometry decreasing with both the cerium content in the sample and the sintering temperature. Nevertheless, such a deviation from the ideal O/M = 2.00 ratio was found to generate only moderate structural disorder from EXAFS data at the U-L3 edge as all the samples retained the fluorite-type structure of the UO2 and CeO2 parent compounds. The determination of accurate lattice parameters owing to S-PXRD measurements led to complementing the data reported in the literature by various authors. These data were consistent with an empirical relation linking the unit cell parameter, the chemical composition, and the O/M stoichiometry, showing that the latter can be evaluated simply within a ± 0.02 uncertainty.

4.
Mol Biol Evol ; 38(1): 2-15, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32797213

RESUMEN

Cytoplasmic incompatibility is a selfish reproductive manipulation induced by the endosymbiont Wolbachia in arthropods. In males Wolbachia modifies sperm, leading to embryonic mortality in crosses with Wolbachia-free females. In females, Wolbachia rescues the cross and allows development to proceed normally. This provides a reproductive advantage to infected females, allowing the maternally transmitted symbiont to spread rapidly through host populations. We identified homologs of the genes underlying this phenotype, cifA and cifB, in 52 of 71 new and published Wolbachia genome sequences. They are strongly associated with cytoplasmic incompatibility. There are up to seven copies of the genes in each genome, and phylogenetic analysis shows that Wolbachia frequently acquires new copies due to pervasive horizontal transfer between strains. In many cases, the genes have subsequently acquired loss-of-function mutations to become pseudogenes. As predicted by theory, this tends to occur first in cifB, whose sole function is to modify sperm, and then in cifA, which is required to rescue the cross in females. Although cif genes recombine, recombination is largely restricted to closely related homologs. This is predicted under a model of coevolution between sperm modification and embryonic rescue, where recombination between distantly related pairs of genes would create a self-incompatible strain. Together, these patterns of gene gain, loss, and recombination support evolutionary models of cytoplasmic incompatibility.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Interacciones Huésped-Patógeno/genética , Secuencias Repetitivas de Ácidos Nucleicos , Wolbachia/genética , Animales , Drosophila/microbiología , Drosophila/fisiología , Femenino , Masculino , Espermatozoides/fisiología
5.
Appl Environ Microbiol ; 88(22): e0141222, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36318064

RESUMEN

The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Wolbachia , Animales , Humanos , Wolbachia/genética , Mosquitos Vectores , Aedes/microbiología , Genómica
6.
BMC Microbiol ; 22(1): 98, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410125

RESUMEN

BACKGROUND: Some people produce specific body odours that make them more attractive than others to mosquitoes, and consequently are at higher risk of contracting vector-borne diseases. The skin microbiome can break down carbohydrates, fatty acids and peptides on the skin into volatiles that mosquitoes can differentiate. RESULTS: Here, we examined how skin microbiome composition of women differs in relation to level of attractiveness to Anopheles coluzzii mosquitoes, to identify volatiles in body odour and metabolic pathways associated with individuals that tend to be poorly-attractive to mosquitoes. We used behavioural assays to measure attractiveness of participants to An. coluzzii mosquitoes, 16S rRNA amplicon sequencing of the bacteria sampled from the skin and gas chromatography of volatiles in body odour. We found differences in skin microbiome composition between the poorly- and highly-attractive groups, particularly eight Amplicon Sequence Variants (ASVs) belonging to the Proteobacteria, Actinobacteria and Firmicutes phyla. Staphylococcus 2 ASVs are four times as abundant in the highly-attractive compared to poorly-attractive group. Associations were found between these ASVs and volatiles known to be attractive to Anopheles mosquitoes. Propanoic pathways are enriched in the poorly-attractive participants compared to those found to be highly-attractive. CONCLUSIONS: Our findings suggest that variation in attractiveness of people to mosquitoes is related to the composition of the skin microbiota, knowledge that could improve odour-baited traps or other next generation vector control tools.


Asunto(s)
Anopheles , Microbiota , Animales , Bacterias/genética , Bacterias/metabolismo , Femenino , Humanos , Mosquitos Vectores , Odorantes/análisis , ARN Ribosómico 16S/genética
7.
PLoS Pathog ; 15(9): e1007936, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31504075

RESUMEN

Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive mechanism wherein the sons of infected females are selectively killed. Despite decades of research, the gene(s) underlying Wolbachia-induced male killing remain unknown. Here using comparative genomic, transgenic, and cytological approaches in fruit flies, we identify a candidate gene in the eukaryotic association module of Wolbachia prophage WO, termed WO-mediated killing (wmk), which transgenically causes male-specific lethality during early embryogenesis and cytological defects typical of the pathology of male killing. The discovery of wmk establishes new hypotheses for the potential role of phage genes in sex-specific lethality, including the control of arthropod pests and vectors.


Asunto(s)
Profagos/genética , Profagos/patogenicidad , Wolbachia/patogenicidad , Wolbachia/virología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Drosophila/embriología , Drosophila/microbiología , Drosophila/virología , Drosophila melanogaster/embriología , Drosophila melanogaster/microbiología , Drosophila melanogaster/virología , Femenino , Genes Letales , Genes Virales , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Masculino , Profagos/fisiología , Razón de Masculinidad , Simbiosis/genética , Simbiosis/fisiología , Proteínas Virales/genética , Proteínas Virales/fisiología
8.
Mol Ecol ; 29(11): 2063-2079, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32391935

RESUMEN

The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host-symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus-specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell-autonomous, these effects are likely to affect the virus-blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host-symbiont-virus-dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.


Asunto(s)
Factores de Edad , Drosophila , Simbiosis , Virosis , Wolbachia , Animales , Drosophila/genética , Drosophila/microbiología , Drosophila/virología , Genotipo , Simbiosis/genética
9.
Malar J ; 19(1): 27, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941507

RESUMEN

BACKGROUND: Bubaque is the most populous island of the Bijagos archipelago, a group of malaria-endemic islands situated off the coast of Guinea-Bissau, West Africa. Malaria vector control on Bubaque relies almost exclusively on the use of long-lasting insecticidal nets (LLINs). However, there is little information on local vector bionomics and insecticide resistance. METHODS: A survey of mosquito species composition was performed at the onset of the wet season (June/July) and the beginning of the dry season (November/December). Sampling was performed using indoor adult light-traps and larval dipping. Anopheles mosquitoes were identified to species level and assessed for kdr allele frequency by TaqMan PCR. Females were analysed for sporozoite positivity by CSP-ELISA. Resistance to permethrin and α-cypermethrin was measured using the CDC-bottle bioassay incorporating the synergist piperonyl-butoxide. RESULTS: Several Anopheles species were found on the island, all belonging to the Anopheles gambiae sensu lato (s.l.) complex, including An. gambiae sensu stricto, Anopheles coluzzii, Anopheles melas, and An. gambiae/An. coluzzii hybrids. Endophagic Anopheles species composition and abundance showed strong seasonal variation, with a majority of An. gambiae (50% of adults collected) caught in June/July, while An. melas was dominant in November/December (83.9% of adults collected). Anopheles gambiae had the highest sporozoite rate in both seasons, with infection rates of 13.9% and 20% in June/July and November/December, respectively. Moderate frequencies of the West African kdr allele were found in An. gambiae (36%), An. coluzzii (35%), An. gambiae/An. coluzzii hybrids (42%). Bioassays suggest moderate resistance to α-cypermethrin, but full susceptibility to permethrin. CONCLUSIONS: The island of Bubaque maintained an An. gambiae s.l. population in both June/July and November/December. Anopheles gambiae was the primary vector at the onset of the wet season, while An. melas is likely to be responsible for most dry season transmission. There was moderate kdr allele frequency and synergist assays suggest likely metabolic resistance, which could reduce the efficacy of LLINs. Future control of malaria on the islands should consider the seasonal shift in mosquito species, and should employ continuous monitoring for insecticide resistance.


Asunto(s)
Anopheles/clasificación , Resistencia a los Insecticidas , Malaria/transmisión , Mosquitos Vectores/clasificación , Animales , Anopheles/enzimología , Anopheles/genética , Bioensayo/métodos , ADN/aislamiento & purificación , Femenino , Técnicas de Genotipaje , Guinea Bissau , Resistencia a los Insecticidas/genética , Islas , Malaria/prevención & control , Mosquitos Vectores/enzimología , Mosquitos Vectores/genética , Proyectos Piloto , Estaciones del Año , Encuestas y Cuestionarios , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
10.
Proc Biol Sci ; 286(1914): 20192117, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31662085

RESUMEN

Wolbachia, a common vertically transmitted symbiont, can protect insects against viral infection and prevent mosquitoes from transmitting viral pathogens. For this reason, Wolbachia-infected mosquitoes are being released to prevent the transmission of dengue and other arboviruses. An important question for the long-term success of these programmes is whether viruses can evolve to escape the antiviral effects of Wolbachia. We have found that Wolbachia altered the outcome of competition between strains of the DCV virus in Drosophila. However, Wolbachia still effectively blocked the virus genotypes that were favoured in the presence of the symbiont. We conclude that Wolbachia did cause an evolutionary response in viruses, but this has little or no impact on the effectiveness of virus blocking.


Asunto(s)
Drosophila/microbiología , Simbiosis , Virus , Wolbachia/fisiología , Aedes , Animales , Culicidae , Drosophila/fisiología , Virosis
12.
Anal Chem ; 90(12): 7502-7509, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29842785

RESUMEN

Conventional blood group phenotyping by hemagglutination assays, carried out pretransfusion, is unsuitable in certain clinical situations. Molecular typing offers an alternative method, allowing the deduction of blood group phenotype from genotype. However, current methods require a long turnaround time and are not performed on-site, limiting their application in emergency situations. Here, we report the development of a novel, rapid multiplex molecular method to identify seven alleles in three clinically relevant blood group systems (Kidd, Duffy, and MNS). Our test, using a dry-reagent allele-specific lateral flow biosensor, does not require DNA extraction and allows easy visual determination of blood group genotype. Multiplex linear-after-the-exponential (LATE)-PCR and lateral flow parameters were optimized with a total processing time of 1 h from receiving the blood sample. Our assay had a 100% concordance rate between the deduced and the standard serological phenotype in a sample from 108 blood donors, showing the accuracy of the test. Owing to its simple handling, the assay can be operated by nonskilled health-care professionals. The proposed assay offers the potential for the development of other relevant single nucleotide polymorphism (SNP) panels for immunohematology and new applications, such as for infectious diseases, in the near future.


Asunto(s)
Antígenos de Grupos Sanguíneos/genética , Técnicas de Genotipaje , Reacción en Cadena de la Polimerasa Multiplex , Alelos , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética
13.
PLoS Pathog ; 12(4): e1005536, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27089431

RESUMEN

The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced) mechanism.


Asunto(s)
Drosophila melanogaster/genética , Genoma Viral , ARN Viral/genética , Replicación Viral/fisiología , Wolbachia/metabolismo , Animales , Línea Celular , Genoma Viral/genética , Humanos , MicroARNs/genética , ARN Interferente Pequeño/genética , Virus de los Bosques Semliki , Simbiosis , Transcripción Genética
14.
Rev Infirm ; 67(238): 20-21, 2018 Feb.
Artículo en Francés | MEDLINE | ID: mdl-29426552

RESUMEN

Nurses who work on general wards are on the frontline for detecting psychosocial risk factors during induction and support interviews. They supplement their diagnoses by exploring areas in which occupational stress may be expressed.


Asunto(s)
Entrevista Psicológica/métodos , Enfermeras y Enfermeros/psicología , Estrés Laboral/diagnóstico , Humanos , Factores de Riesgo , Estrés Psicológico/diagnóstico
15.
PLoS Pathog ; 11(7): e1005021, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26132467

RESUMEN

Symbionts can have mutualistic effects that increase their host's fitness and/or parasitic effects that reduce it. Which of these strategies evolves depends in part on the balance of their costs and benefits to the symbiont. We have examined these questions in Wolbachia, a vertically transmitted endosymbiont of insects that can provide protection against viral infection and/or parasitically manipulate its hosts' reproduction. Across multiple symbiont strains we find that the parasitic phenotype of cytoplasmic incompatibility and antiviral protection are uncorrelated. Strong antiviral protection is associated with substantial reductions in other fitness-related traits, whereas no such trade-off was detected for cytoplasmic incompatibility. The reason for this difference is likely that antiviral protection requires high symbiont densities but cytoplasmic incompatibility does not. These results are important for the use of Wolbachia to block dengue virus transmission by mosquitoes, as natural selection to reduce these costs may lead to reduced symbiont density and the loss of antiviral protection.


Asunto(s)
Drosophila simulans/microbiología , Interacciones Huésped-Parásitos/fisiología , Simbiosis/fisiología , Wolbachia , Animales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Mol Ecol ; 26(15): 4072-4084, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28464440

RESUMEN

Wolbachia is a common heritable bacterial symbiont in insects. Its evolutionary success lies in the diverse phenotypic effects it has on its hosts coupled to its propensity to move between host species over evolutionary timescales. In a survey of natural host-symbiont associations in a range of Drosophila species, we found that 10 of 16 Wolbachia strains protected their hosts against viral infection. By moving Wolbachia strains between host species, we found that the symbiont genome had a much greater influence on the level of antiviral protection than the host genome. The reason for this was that the level of protection depended on the density of the symbiont in host tissues, and Wolbachia rather than the host-controlled density. The finding that virus resistance and symbiont density are largely under the control of symbiont genes in this system has important implications both for the evolution of these traits and for public health programmes using Wolbachia to prevent mosquitoes from transmitting disease.


Asunto(s)
Resistencia a la Enfermedad , Drosophila/microbiología , Simbiosis , Wolbachia/genética , Animales , Drosophila/genética , Drosophila/virología , Genoma Bacteriano , Genoma de los Insectos , Fenotipo , Virus/patogenicidad
17.
Chemphyschem ; 18(19): 2666-2674, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28722787

RESUMEN

Highly reactive and nanosized Th1-x Yx O2-x/2 or Ce0.8 Ln0.2 O1.9 mixed oxides were prepared through the initial precipitation of hydroxide precursors which were further dried under vacuum. Whatever the chemical system investigated, the characterization of the powdered samples evidenced a rapid aging process leading to hydrated oxides. The thermal behavior of these samples was further investigated and first showed a two-step dehydration process, with the successive departure of adsorbed and constitutive water, both yielding a drastic drop of the powders' reactivity (i.e. decrease of the specific surface area). Sintering experiments were then undertaken by starting directly from raw powders and revealed very rapid densification kinetics. Highly densified pellets (above 95 %TD) with a fine grain microstructure were obtained after only 1 hour of heat treatment at 1600 °C. This easy and versatile process of precipitation, that can be followed by direct densification of the powders, then appears as a promising option for the elaboration of homogenous ceramic electrolytes.

18.
J Gen Virol ; 97(2): 523-535, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26642803

RESUMEN

Parasitoid wasps can be found in association with heritable viruses. Although some viruses have been shown to profoundly affect the biology and evolution of parasitoid wasps, the genetic and phenotypic diversity of parasitoid-associated viruses remains largely unexplored. We previously discovered a behaviour-manipulating DNA virus in the parasitoid wasp Leptopilina boulardi. In this species, which lays its eggs inside Drosophila larvae, Leptopilina boulardi filamentous virus (LbFV) forces the females to lay their eggs in already parasitized Drosophila larvae. This behavioural manipulation increases the chances for the horizontal transmission of the virus. Here, we describe in the same parasitoid species another virus, which we propose to call Leptopilina boulardi toti-like virus (LbTV). This double-stranded RNA virus is highly prevalent in insect laboratory lines as well as in parasitoids caught in the field. In some cases, LbTV was found in coinfection with LbFV, but did not affect the behaviour of the wasp. Instead we found that the presence of LbTV correlates with an increase in the number of offspring, mostly due to increased survival of parasitoid larvae. LbTV is vertically transmitted mostly through the maternal lineage even if frequent paternal transmission also occurs. Unlike LbFV, LbTV is not horizontally transmitted. Its genome encodes a putative RNA-dependent RNA polymerase (RdRp) showing similarities with RdRps of Totiviridae. These results underline the high incidence and diversity of inherited viruses in parasitoids as well as their potential impact on the phenotype of their hosts.


Asunto(s)
Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Totiviridae/genética , Totiviridae/aislamiento & purificación , Avispas/virología , Animales , Conducta Animal , Análisis por Conglomerados , Femenino , Transmisión Vertical de Enfermedad Infecciosa , Virus de Insectos/clasificación , Masculino , Datos de Secuencia Molecular , Filogenia , Prevalencia , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia , Análisis de Supervivencia , Totiviridae/clasificación , Avispas/fisiología , Testamentos
19.
Proc Biol Sci ; 283(1833)2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27335421

RESUMEN

Heritable symbionts that protect their hosts from pathogens have been described in a wide range of insect species. By reducing the incidence or severity of infection, these symbionts have the potential to reduce the strength of selection on genes in the insect genome that increase resistance. Therefore, the presence of such symbionts may slow down the evolution of resistance. Here we investigated this idea by exposing Drosophila melanogaster populations to infection with the pathogenic Drosophila C virus (DCV) in the presence or absence of Wolbachia, a heritable symbiont of arthropods that confers protection against viruses. After nine generations of selection, we found that resistance to DCV had increased in all populations. However, in the presence of Wolbachia the resistant allele of pastrel-a gene that has a major effect on resistance to DCV-was at a lower frequency than in the symbiont-free populations. This finding suggests that defensive symbionts have the potential to hamper the evolution of insect resistance genes, potentially leading to a state of evolutionary addiction where the genetically susceptible insect host mostly relies on its symbiont to fight pathogens.


Asunto(s)
Resistencia a la Enfermedad/genética , Drosophila melanogaster/microbiología , Drosophila melanogaster/virología , Genes de Insecto , Selección Genética , Simbiosis , Alelos , Animales , Evolución Molecular , Virus de Insectos , Wolbachia
20.
PLoS Pathog ; 10(9): e1004369, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233341

RESUMEN

In the last decade, bacterial symbionts have been shown to play an important role in protecting hosts against pathogens. Wolbachia, a widespread symbiont in arthropods, can protect Drosophila and mosquito species against viral infections. We have investigated antiviral protection in 19 Wolbachia strains originating from 16 Drosophila species after transfer into the same genotype of Drosophila simulans. We found that approximately half of the strains protected against two RNA viruses. Given that 40% of terrestrial arthropod species are estimated to harbour Wolbachia, as many as a fifth of all arthropods species may benefit from Wolbachia-mediated protection. The level of protection against two distantly related RNA viruses--DCV and FHV--was strongly genetically correlated, which suggests that there is a single mechanism of protection with broad specificity. Furthermore, Wolbachia is making flies resistant to viruses, as increases in survival can be largely explained by reductions in viral titer. Variation in the level of antiviral protection provided by different Wolbachia strains is strongly genetically correlated to the density of the bacteria strains in host tissues. We found no support for two previously proposed mechanisms of Wolbachia-mediated protection--activation of the immune system and upregulation of the methyltransferase Dnmt2. The large variation in Wolbachia's antiviral properties highlights the need to carefully select Wolbachia strains introduced into mosquito populations to prevent the transmission of arboviruses.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/inmunología , Interacciones Huésped-Patógeno/inmunología , Virus de Insectos/patogenicidad , Simbiosis/inmunología , Virosis/inmunología , Wolbachia/fisiología , Animales , Drosophila/microbiología , Drosophila/virología , Femenino , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Virosis/microbiología , Virosis/virología , Wolbachia/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA