RESUMEN
Cutaneous melanoma is a type of cancer with an inherent potential for lymph node colonization, which is generally preceded by neolymphangiogenesis. However, sentinel lymph node removal does not necessarily extend the overall survival of patients with melanoma. Moreover, lymphatic vessels collapse and become dysfunctional as melanomas progress. Therefore, it is unclear whether (and how) lymphangiogenesis contributes to visceral metastasis. Soluble and vesicle-associated proteins secreted by tumours and/or their stroma have been proposed to condition pre-metastatic sites in patients with melanoma. Still, the identities and prognostic value of lymphangiogenic mediators remain unclear. Moreover, our understanding of lymphangiogenesis (in melanomas and other tumour types) is limited by the paucity of mouse models for live imaging of distal pre-metastatic niches. Injectable lymphatic tracers have been developed, but their limited diffusion precludes whole-body imaging at visceral sites. Vascular endothelial growth factor receptor 3 (VEGFR3) is an attractive 'lymphoreporter' because its expression is strongly downregulated in normal adult lymphatic endothelial cells, but is activated in pathological situations such as inflammation and cancer. Here, we exploit this inducibility of VEGFR3 to engineer mouse melanoma models for whole-body imaging of metastasis generated by human cells, clinical biopsies or endogenously deregulated oncogenic pathways. This strategy revealed early induction of distal pre-metastatic niches uncoupled from lymphangiogenesis at primary lesions. Analyses of the melanoma secretome and validation in clinical specimens showed that the heparin-binding factor midkine is a systemic inducer of neo-lymphangiogenesis that defines patient prognosis. This role of midkine was linked to a paracrine activation of the mTOR pathway in lymphatic endothelial cells. These data support the use of VEGFR3 reporter mice as a 'MetAlert' discovery platform for drivers and inhibitors of metastasis.
Asunto(s)
Citocinas/metabolismo , Vasos Linfáticos/metabolismo , Metástasis de la Neoplasia/diagnóstico por imagen , Metástasis de la Neoplasia/patología , Imagen de Cuerpo Entero/métodos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Femenino , Genes Reporteros , Humanos , Linfangiogénesis , Vasos Linfáticos/patología , Masculino , Melanoma/diagnóstico por imagen , Melanoma/metabolismo , Melanoma/patología , Ratones , Midkina , Comunicación Paracrina , Pronóstico , Recurrencia , Reproducibilidad de los Resultados , Serina-Treonina Quinasas TOR/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/análisis , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
OBJECTIVE: The purpose of this study was to investigate the role of Fat4 and Dachsous1 signaling in the lymphatic vasculature. APPROACH AND RESULTS: Phenotypic analysis of the lymphatic vasculature was performed in mice lacking functional Fat4 or Dachsous1. The overall architecture of lymphatic vasculature is unaltered, yet both genes are specifically required for lymphatic valve morphogenesis. Valve endothelial cells (Prox1high [prospero homeobox protein 1] cells) are disoriented and failed to form proper valve leaflets. Using Lifeact-GFP (green fluorescent protein) mice, we revealed that valve endothelial cells display prominent actin polymerization. Finally, we showed the polarized recruitment of Dachsous1 to membrane protrusions and cellular junctions of valve endothelial cells in vivo and in vitro. CONCLUSIONS: Our data demonstrate that Fat4 and Dachsous1 are critical regulators of valve morphogenesis. This study highlights that valve defects may contribute to lymphedema in Hennekam syndrome caused by Fat4 mutations.
Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Células Endoteliales/metabolismo , Endotelio Linfático/metabolismo , Linfangiogénesis , Vasos Linfáticos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Cadherinas/deficiencia , Cadherinas/genética , Células Cultivadas , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Células Endoteliales/patología , Endotelio Linfático/patología , Técnica del Anticuerpo Fluorescente , Predisposición Genética a la Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Humanos , Linfangiectasia Intestinal/genética , Linfangiectasia Intestinal/metabolismo , Linfangiectasia Intestinal/patología , Vasos Linfáticos/patología , Linfedema/genética , Linfedema/metabolismo , Linfedema/patología , Ratones Noqueados , Mutación , Fenotipo , Multimerización de Proteína , Transducción de Señal , Transfección , Proteínas Supresoras de Tumor/genéticaRESUMEN
RATIONALE: The formation of the blood vasculature is achieved via 2 fundamentally different mechanisms, de novo formation of vessels from endothelial progenitors (vasculogenesis) and sprouting of vessels from pre-existing ones (angiogenesis). In contrast, mammalian lymphatic vasculature is thought to form exclusively by sprouting from embryonic veins (lymphangiogenesis). Alternative nonvenous sources of lymphatic endothelial cells have been suggested in chicken and Xenopus, but it is unclear whether they exist in mammals. OBJECTIVE: We aimed to clarify the origin of the murine dermal lymphatic vasculature. METHODS AND RESULTS: We performed lineage tracing experiments and analyzed mutants lacking the Prox1 transcription factor, a master regulator of lymphatic endothelial cell identity, in Tie2 lineage venous-derived lymphatic endothelial cells. We show that, contrary to current dogma, a significant part of the dermal lymphatic vasculature forms independently of sprouting from veins. Although lymphatic vessels of cervical and thoracic skin develop via sprouting from venous-derived lymph sacs, vessels of lumbar and dorsal midline skin form via assembly of non-Tie2-lineage cells into clusters and vessels through a process defined as lymphvasculogenesis. CONCLUSIONS: Our results demonstrate a significant contribution of nonvenous-derived cells to the dermal lymphatic vasculature. Demonstration of a previously unknown lymphatic endothelial cell progenitor population will now allow further characterization of their origin, identity, and functions during normal lymphatic development and in pathology, as well as their potential therapeutic use for lymphatic regeneration.
Asunto(s)
Linaje de la Célula , Células Endoteliales/citología , Células Progenitoras Endoteliales/citología , Endotelio Linfático/citología , Linfangiogénesis , Piel/irrigación sanguínea , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Células Endoteliales/metabolismo , Células Progenitoras Endoteliales/metabolismo , Endotelio Linfático/metabolismo , Genes Reporteros , Edad Gestacional , Proteínas de Homeodominio/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Receptor TIE-2/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Venas/citología , Venas/metabolismoRESUMEN
The Pdgfrb-Cre line has been used as a tool to specifically target pericytes and vascular smooth muscle cells. Recent studies showed additional targeting of cardiac and mesenteric lymphatic endothelial cells (LECs) by the Pdgfrb-Cre transgene. In the heart, this was suggested to provide evidence for a previously unknown nonvenous source of LECs originating from yolk sac (YS) hemogenic endothelium (HemEC). Here we show that Pdgfrb-Cre does not, however, target YS HemEC or YS-derived erythro-myeloid progenitors (EMPs). Instead, a high proportion of ECs in embryonic blood vessels of multiple organs, as well as venous-derived LECs were targeted. Assessment of temporal Cre activity using the R26-mTmG double reporter suggested recent occurrence of Pdgfrb-Cre recombination in both blood and lymphatic ECs. It thus cannot be excluded that Pdgfrb-Cre mediated targeting of LECs is due to de novo expression of the Pdgfrb-Cre transgene or their previously established venous endothelial origin. Importantly, Pdgfrb-Cre targeting of LECs does not provide evidence for YS HemEC origin of the lymphatic vasculature. Our results highlight the need for careful interpretation of lineage tracing using constitutive Cre lines that cannot discriminate active from historical expression. The early vascular targeting by the Pdgfrb-Cre also warrants consideration for its use in studies of mural cells. genesis 54:350-358, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
Asunto(s)
Células Endoteliales/metabolismo , Corazón/crecimiento & desarrollo , Linfangiogénesis/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Linaje de la Célula , Marcación de Gen , Integrasas/genética , Vasos Linfáticos/metabolismo , Ratones Transgénicos , Miocitos del Músculo Liso/metabolismo , Venas/crecimiento & desarrollo , Venas/metabolismo , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismoRESUMEN
The lymphatic system is essential in many physiological and pathological processes. Still, much remains to be known about the molecular mechanisms that control its development and function and how to modulate them therapeutically. The study of these mechanisms will benefit from better controlled genetic mouse models targeting specifically lymphatic endothelial cells. Among the genes expressed predominantly in lymphatic endothelium, Vegfr3 was the first one identified and is still considered to be one of the best lymphatic markers and a key regulator of the lymphatic system. Here, we report the generation of a Vegfr3-CreER (T2) knockin mouse by gene targeting in embryonic stem cells. This mouse expresses the tamoxifen-inducible CreER(T2) recombinase under the endogenous transcriptional control of the Vegfr3 gene without altering its physiological expression or regulation. The Vegfr3-CreER (T2) allele drives efficient recombination of floxed sequences upon tamoxifen administration specifically in Vegfr3-expressing cells, both in vitro, in primary lymphatic endothelial cells, and in vivo, at different stages of mouse embryonic development and postnatal life. Thus, our Vegfr3-CreER (T2) mouse constitutes a new powerful genetic tool for lineage tracing analysis and for conditional gene manipulation in the lymphatic endothelium that will contribute to improve our current understanding of this system.
Asunto(s)
Sistema Linfático/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen/métodos , Integrasas/genética , Sistema Linfático/citología , Sistema Linfático/crecimiento & desarrollo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Tamoxifeno/farmacologíaRESUMEN
We have identified KIF11 mutations in individuals with syndromic autosomal-dominant microcephaly associated with lymphedema and/or chorioretinopathy. Initial whole-exome sequencing revealed heterozygous KIF11 mutations in three individuals with a combination of microcephaly and lymphedema from a microcephaly-lymphedema-chorioretinal-dysplasia cohort. Subsequent Sanger sequencing of KIF11 in a further 15 unrelated microcephalic probands with lymphedema and/or chorioretinopathy identified additional heterozygous mutations in 12 of them. KIF11 encodes EG5, a homotetramer kinesin motor. The variety of mutations we have found (two nonsense, two splice site, four missense, and six indels causing frameshifts) are all predicted to have an impact on protein function. EG5 has previously been shown to play a role in spindle assembly and function, and these findings highlight the critical role of proteins necessary for spindle formation in CNS development. Moreover, identification of KIF11 mutations in patients with chorioretinopathy and lymphedema suggests that EG5 is involved in the development and maintenance of retinal and lymphatic structures.
Asunto(s)
Colestasis/genética , Anomalías Congénitas/genética , Cinesinas/genética , Linfedema/congénito , Microcefalia/genética , Mutación , Anomalías Múltiples/genética , Estudios de Cohortes , Exoma , Facies , Femenino , Heterocigoto , Humanos , Linfedema/genética , Masculino , Linaje , Fenotipo , Displasia Retiniana/genéticaRESUMEN
Lymphatic vessel growth or lymphangiogenesis occurs during embryonic development and wound healing and plays an important role in tumor metastasis and inflammatory diseases. However, the possibility of noninvasive detection and quantification of lymphangiogenesis has been lacking. Here, we present the Vegfr3(EGFPLuc) mouse model, where an EGFP-luciferase fusion protein, expressed under the endogenous transcriptional control of the Vegfr3 gene, allows the monitoring of physiological and pathological lymphangiogenesis in vivo. We show tracking of lymphatic vessel development during embryogenesis as well as lymphangiogenesis induced by specific growth factors, during wound healing and in contact hypersensitivity (CHS)--induced inflammation where we also monitor down-regulation of lymphangiogenesis by the glucocorticoid dexamethasone. Importantly, the Vegfr3-reporter allowed us to tracking tumor-induced lymphangiogenesis at the tumor periphery and in lymph nodes in association with the metastatic process. This is the first reporter mouse model for luminescence imaging of lymphangiogenesis. It should provide an important tool for studying the involvement of lymphangiogenesis in pathological processes.
Asunto(s)
Diagnóstico por Imagen/métodos , Inflamación/metabolismo , Vasos Linfáticos/metabolismo , Cicatrización de Heridas , Animales , Línea Celular Tumoral , Dexametasona/farmacología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Glucocorticoides/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inflamación/genética , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Linfangiogénesis/efectos de los fármacos , Metástasis Linfática , Vasos Linfáticos/embriología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Factores de Tiempo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Lymphatic vasculature forms the second part of our circulatory system that plays a critical role in tissue fluid homeostasis. Failure of the lymphatic system can lead to excessive accumulation of fluid within the tissue, a condition called lymphedema. Lymphatic dysfunction has also been implicated in cancer metastasis as well as pathogenesis of obesity, atherosclerosis and cardiovascular disease. Since the identification of the first lymphatic marker VEGFR-3 and growth factor VEGF-C almost 20 years ago, a great progress has been made in understanding the mechanisms of lymphangiogenesis. This has been achieved largely through characterization of animal models with specific lymphatic defects and identification of genes causative of human hereditary lymphedema syndromes. In this review we will summarize the current understanding of the regulation of lymphatic vascular morphogenesis, focusing on mechanisms that have been implicated in both developmental and pathological (tumor) lymphangiogenesis.
Asunto(s)
Linfangiogénesis , Vasos Linfáticos/fisiopatología , Morfogénesis , Neoplasias/patología , Animales , HumanosRESUMEN
The hypothalamic arcuate nucleus (ARH) contains neurons vital for maintaining energy homeostasis that sense and respond to changes in blood-borne metabolic hormones. Despite its juxtaposition to the median eminence (ME), a circumventricular organ lacking a blood-brain barrier and thus exposed to circulating molecules, only a few ventral ARH neurons perceive these extravasating metabolic signals due to a poorly understood ME/ARH diffusion barrier. Here, we show in male mice that aggrecan, a perineural-net proteoglycan deposited by orexigenic ARH neurons, creates a peculiar ventrodorsal diffusion gradient. Fasting enhances aggrecan deposition more dorsally, reinforcing the diffusion barrier, particularly around neurons adjacent to fenestrated capillary loops that enter the ARH. The disruption of aggrecan deposits results in unregulated diffusion of blood-borne molecules into the ARH and impairs food intake. Our findings reveal the molecular nature and plasticity of the ME/ARH diffusion barrier, and indicate its physiological role in hypothalamic metabolic hormone sensing.
Asunto(s)
Agrecanos , Núcleo Arqueado del Hipotálamo , Metabolismo Energético , Neuronas , Animales , Masculino , Ratones , Agrecanos/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Barrera Hematoencefálica/metabolismo , Ingestión de Alimentos/fisiología , Ayuno/metabolismo , Eminencia Media/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Transducción de Señal , Red Nerviosa/metabolismo , Matriz Extracelular/metabolismoRESUMEN
BACKGROUND: Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS: Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS: In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS: Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT: Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Asunto(s)
Células Ependimogliales , Receptor alfa de Estrógeno , Fertilidad , Hormona Luteinizante , Transducción de Señal , Animales , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Ratones , Fertilidad/fisiología , Células Ependimogliales/metabolismo , Transducción de Señal/fisiología , Hormona Luteinizante/metabolismo , Ciclo Estral/fisiología , Ciclo Estral/metabolismo , Neuropéptido Y/metabolismo , Ovariectomía , Neuronas/metabolismo , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Hormona Liberadora de Gonadotropina/metabolismoRESUMEN
Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.
Asunto(s)
Células Endoteliales , Vasos Linfáticos , Ratones , Animales , Células Endoteliales/metabolismo , Linfangiogénesis/fisiología , Quimiocina CCL2 , CapilaresRESUMEN
The developmental origins of lymphatic endothelial cells (LECs) have been under intense research after a century-long debate. Although previously thought to be of solely venous endothelial origin, additional sources of LECs were recently identified in multiple tissues in mice. Here, we investigated the regional differences in the origin(s) of the dermal lymphatic vasculature by lineage tracing using the pan-endothelial Cdh5-CreER T2 line. Tamoxifen-induced labeling of blood ECs at E9.5, before initiation of lymphatic development, traced most of the dermal LECs but with lower efficiency in the lumbar compared with the cervical skin. By contrast, when used at E9.5 but not at E11.5, 4-hydroxytamoxifen, the active metabolite of tamoxifen that provides a tighter window of Cre activity, revealed low labeling frequency of LECs, and lymphvasculogenic clusters in the lumbar skin in particular. Temporally restricted lineage tracing thus reveals contribution of LECs of Cdh5-lineage-independent origin to dermal lymphatic vasculature. Our results further highlight Cre induction strategy as a critical parameter in defining the temporal window for stage-specific lineage tracing during early developmental stages of rapid tissue differentiation.
Asunto(s)
Células Endoteliales , Vasos Linfáticos , Animales , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Ratones , Piel/metabolismo , Tamoxifeno/farmacologíaRESUMEN
Cre/loxP-dependent expression of fluorescent proteins represents a powerful biological tool for cell lineage, fate-mapping, and genetic analysis. Live tissue imaging has significantly improved with the development of far-red fluorescent proteins, with optimized spectral characteristics for in vivo applications. Here, we report the generation of the first transgenic mouse line expressing the far-red fluorescent protein Katushka, driven by the hybrid CAG promoter upon Cre-mediated recombination. After germ line or tissue-specific Cre-driven reporter activation, Katushka expression is strong and ubiquitous, without toxic effects, allowing fluorescence detection in fresh and fixed samples from all tissues examined. Moreover, fluorescence can be detected by in vivo noninvasive whole-body imaging when Katuhska is expressed exclusively in a specific cell population deep within the animal body such as pancreatic beta cells. Thus, this reporter model enables early, widespread, and sensitive in vivo detection of Cre activity and should provide a versatile tool for a wide spectrum of fluorescence and live-imaging applications.
Asunto(s)
Integrasas/genética , Proteínas Luminiscentes/genética , Animales , Citometría de Flujo/métodos , Genes Reporteros , Ratones , Ratones Transgénicos , Microscopía Confocal/métodos , Regiones Promotoras Genéticas , Recombinación Genética , Proteína Fluorescente RojaRESUMEN
Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction-mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.
Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Células Ependimogliales/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Proopiomelanocortina/metabolismo , Animales , Metabolismo Energético , Conducta Alimentaria/fisiología , Uniones Comunicantes/metabolismo , Técnicas de Silenciamiento del Gen , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuronas/metabolismo , Transducción de Señal , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismoRESUMEN
Metabolic health depends on the brain's ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR-EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic ß-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb-EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.
Asunto(s)
Encéfalo/metabolismo , Células Ependimogliales/metabolismo , Receptores ErbB/metabolismo , Leptina/metabolismo , Metabolismo de los Lípidos , Páncreas/metabolismo , Receptores de Leptina/metabolismo , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , FosforilaciónRESUMEN
Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways.
Asunto(s)
Carcinogénesis/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Vasos Linfáticos/anomalías , Mutación/genética , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismo , Animales , Movimiento Celular , Niño , Células Endoteliales/metabolismo , Activación Enzimática , Femenino , Humanos , Vasos Linfáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Serina-Treonina Quinasas TOR/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Lineage tracing allows for identification of all progeny produced by a single cell or groups of cells and can thus be used to assess developmental fate of cells. Here we focus on one of the most widely used lineage tracing approaches that utilize the Cre/loxP system for site-specific genetic recombination in studying the developmental origins of lymphatic endothelial cells (LECs) in the mouse embryo. We discuss general considerations for a successful Cre/loxP based lineage tracing experiment and provide information about strains that are available for genetic lineage tracing of LECs. A protocol for lineage tracing analysis of the lymphatic vasculature by whole-mount immunofluorescence in two embryonic tissues, the skin and the mesentery, is also provided.
Asunto(s)
Células Endoteliales/metabolismo , Ligamiento Genético , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Animales , Biomarcadores , Línea Celular , Células Endoteliales/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Genes Reporteros , Pruebas Genéticas , Integrasas/genética , Integrasas/metabolismo , Mesenterio/embriología , Ratones , Recombinación Genética , Piel/embriología , Piel/metabolismoRESUMEN
Incomplete delivery to the target cells is an obstacle for successful gene therapy approaches. Here we show unexpected effects of incomplete targeting, by demonstrating how heterogeneous inhibition of a growth promoting signaling pathway promotes tissue hyperplasia. We studied the function of the lymphangiogenic VEGFR3 receptor during embryonic and post-natal development. Inducible genetic deletion of Vegfr3 in lymphatic endothelial cells (LECs) leads to selection of non-targeted VEGFR3+ cells at vessel tips, indicating an indispensable cell-autonomous function in migrating tip cells. Although Vegfr3 deletion results in lymphatic hypoplasia in mouse embryos, incomplete deletion during post-natal development instead causes excessive lymphangiogenesis. Analysis of mosaically targeted endothelium shows that VEGFR3- LECs non-cell-autonomously drive abnormal vessel anastomosis and hyperplasia by inducing proliferation of non-targeted VEGFR3+ LECs through cell-contact-dependent reduction of Notch signaling. Heterogeneity in VEGFR3 levels thus drives vessel hyperplasia, which has implications for the understanding of mechanisms of developmental and pathological tissue growth.