Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Immunol ; 18(12): 1342-1352, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29058703

RESUMEN

T cells reorganize their metabolic profiles after being activated, but the systemic metabolic effect of sustained activation of the immune system has remained unexplored. Here we report that augmented T cell responses in Pdcd1-/- mice, which lack the inhibitory receptor PD-1, induced a metabolic serum signature characterized by depletion of amino acids. We found that the depletion of amino acids in serum was due to the accumulation of amino acids in activated Pdcd1-/- T cells in the lymph nodes. A systemic decrease in tryptophan and tyrosine led to substantial deficiency in the neurotransmitters serotonin and dopamine in the brain, which resulted in behavioral changes dominated by anxiety-like behavior and exacerbated fear responses. Together these data indicate that excessive activation of T cells causes a systemic metabolomic shift with consequences that extend beyond the immune system.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/fisiología , Miedo/fisiología , Activación de Linfocitos/inmunología , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/inmunología , Aminoácidos/sangre , Animales , Encéfalo/metabolismo , Dopamina/deficiencia , Interferón gamma/sangre , Quinurenina/sangre , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Muerte Celular Programada 1/deficiencia , Serotonina/deficiencia , Linfocitos T/metabolismo , Triptófano/metabolismo , Tirosina/metabolismo
2.
Nature ; 599(7885): 471-476, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732892

RESUMEN

Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8+ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses.


Asunto(s)
Linfocitos B/metabolismo , Interleucina-10/inmunología , Macrófagos/metabolismo , Neoplasias/inmunología , Ácido gamma-Aminobutírico/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Femenino , Eliminación de Gen , Glutamato Descarboxilasa/deficiencia , Glutamato Descarboxilasa/genética , Humanos , Inflamación/inmunología , Inflamación/prevención & control , Macrófagos/inmunología , Masculino , Ratones , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Ácido gamma-Aminobutírico/biosíntesis
3.
Nat Immunol ; 12(3): 264-70, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21258321

RESUMEN

To elucidate the specific role of somatic hypermutation (SHM) in mucosal immunity, we generated mice carrying a knock-in point mutation in Aicda, which encodes activation-induced cytidine deaminase (AID), an enzyme essential to SHM and class-switch recombination (CSR). These mutant AID(G23S) mice had much less SHM but had normal amounts of immunoglobulin in both serum and intestinal secretions. AID(G23S) mice developed hyperplasia of germinal center B cells in gut-associated lymphoid tissues, accompanied by expansion of microflora in the small intestine. Moreover, AID(G23S) mice had more translocation of Yersinia enterocolitica into mesenteric lymph nodes and were more susceptible than wild-type mice to oral challenge with cholera toxin. Together our results indicate that SHM is critical in maintaining intestinal homeostasis and efficient mucosal defense.


Asunto(s)
Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Homeostasis/inmunología , Mucosa Intestinal/inmunología , Intestinos/inmunología , Mutación , Animales , Técnicas de Sustitución del Gen , Genotipo , Homeostasis/genética , Ratones , Hipermutación Somática de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/inmunología
4.
Immunity ; 41(1): 152-65, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25017466

RESUMEN

Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Inmunoglobulina A/inmunología , Microbiota/inmunología , Inmunidad Adaptativa , Animales , Factores de Transcripción Forkhead/inmunología , Vida Libre de Gérmenes , Centro Germinal/inmunología , Proteínas de Homeodominio/genética , Homeostasis/inmunología , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID/microbiología , Ganglios Linfáticos Agregados/inmunología , Simbiosis/inmunología
5.
Immunity ; 33(1): 71-83, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20643338

RESUMEN

In the Peyer's patches (PPs), germinal centers (GCs) are chronically induced by bacteria and are the major sites for generation of gut immunoglobulin A (IgA) immune responses. Whether follicular dendritic cells (FDCs) within the GCs directly contribute to the IgA production in PPs is unknown. We showed here that direct stimulation of FDCs by bacterial products and retinoic acid synergistically enhanced the expression of the chemokine CXCL13, the survival factor BAFF, and molecules that facilitate the secretion and activation of the cytokine TGF-beta1. A reduced production of these molecules by PP FDCs associated with deficiencies in the Toll-like receptor pathway or vitamin A resulted in decreased numbers of GC B cells and defective generation of IgA(+) B cells within PP GCs. Our data indicate that PP FDCs are conditioned by environmental stimuli to express key factors for B cell migration, survival, and preferential generation of IgA in gut.


Asunto(s)
Quimiocina CXCL13/metabolismo , Células Dendríticas Foliculares/metabolismo , Inmunidad Mucosa , Inmunoglobulina A/biosíntesis , Factores Inmunológicos/farmacología , Animales , Formación de Anticuerpos , Factor Activador de Células B/genética , Factor Activador de Células B/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL13/genética , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/patología , Perfilación de la Expresión Génica , Centro Germinal/patología , Inmunoglobulina A/genética , Ratones , Ganglios Linfáticos Agregados/patología , Transducción de Señal , Receptores Toll-Like/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Deficiencia de Vitamina A
6.
Proc Natl Acad Sci U S A ; 112(5): E450-7, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25609671

RESUMEN

In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell. In VHQ52(NT) mice, IgA replaced IgM to drive early B-cell development and peripheral B-cell maturation. In VHQ52(NT) animals, over 20% of mature B cells disrupted the single productive, nonautoimmune IgH rearrangement through VH replacement and exchanged it with a highly diversified pool of IgH specificities. VH replacement occurred in early pro-B cells, was independent of pre-B-cell receptor signaling, and involved predominantly one adjacent VH germ-line gene. VH replacement was also identified in 5% of peripheral B cells of mice inheriting a different productive VH rearrangement expressed in the form of an IgM H chain. In summary, editing of a productive IgH rearrangement through VH replacement can account for up to 20% of the IgH repertoire expressed by mature B cells.


Asunto(s)
Clonación de Organismos , Inmunoglobulina A/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Animales , Secuencia de Bases , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Transducción de Señal
7.
Immunol Rev ; 260(1): 67-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24942682

RESUMEN

The gut nourishes rich bacterial communities that affect profoundly the functions of the immune system. The relationship between gut microbiota and the immune system is one of reciprocity. The microbiota contributes to nutrient processing and the development, maturation, and function of the immune system. Conversely, the immune system, particularly the adaptive immune system, plays a key role in shaping the repertoire of gut microbiota. The fitness of host immune system is reflected in the gut microbiota, and deficiencies in either innate or adaptive immunity impact on diversity and structures of bacterial communities in the gut. Here, we discuss the mechanisms that underlie this reciprocity and emphasize how the adaptive immune system via immunoglobulins (i.e. IgA) contributes to diversification and balance of gut microbiota required for immune homeostasis.


Asunto(s)
Inmunidad Adaptativa , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Microbiota/inmunología , Animales , Biodiversidad , Homeostasis , Humanos , Inmunidad Innata , Inmunidad Mucosa
8.
Immunity ; 29(2): 261-71, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18656387

RESUMEN

Immunoglobulin A (IgA) is generated in the gut by both T cell-dependent and T cell-independent processes. The sites and the mechanisms for T cell-independent IgA synthesis remain elusive. Here we show that isolated lymphoid follicles (ILFs) were sites where induction of activation-induced cytidine deaminase (AID) and IgA class switching of B cells took place in the absence of T cells. We also show that formation of ILFs was regulated by interactions between lymphoid tissue-inducer cells expressing the nuclear receptor ROR gamma t (ROR gamma t(+)LTi cells) and stromal cells (SCs). Activation of SCs by ROR gamma t(+)LTi cells through lymphotoxin (LT)-beta receptor (LT beta R) and simultaneously by bacteria through TLRs induced recruitment of dendritic cells (DCs) and B cells and formation of ILFs. These findings provide insight into the crosstalk between bacteria, ROR gamma t(+)LTi cells, SCs, DCs, and B cells required for ILF formation and establish a critical role of ILFs in T cell-independent IgA synthesis in gut.


Asunto(s)
Linfocitos B/inmunología , Tracto Gastrointestinal/inmunología , Inmunoglobulina A/biosíntesis , Tejido Linfoide/inmunología , Linfocitos T/inmunología , Animales , Linfocitos B/metabolismo , Comunicación Celular , Citidina Desaminasa/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Tracto Gastrointestinal/metabolismo , Inmunoglobulina A/inmunología , Cambio de Clase de Inmunoglobulina , Tejido Linfoide/citología , Tejido Linfoide/metabolismo , Receptor beta de Linfotoxina/inmunología , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptores de Ácido Retinoico/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Células del Estroma/inmunología , Células del Estroma/metabolismo , Linfocitos T/metabolismo
9.
Immunol Cell Biol ; 92(1): 49-56, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24100385

RESUMEN

The main function of the immune system is to protect the host against pathogens. However, unlike the systemic immune system, the gut immune system does not eliminate, but instead nourishes complex bacterial communities and establishes advanced symbiotic relationships. Immunoglobulin A (IgA) is the most abundant antibody isotype in mammals, produced mainly in the gut. The primary function of IgA is to maintain homeostasis at mucosal surfaces, and studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Dynamic diversification and constant adaptation of IgA responses to local microbiota require expression of activation-induced cytidine deaminase by B cells and control from T follicular helper and Foxp3(+) T cells in germinal centers (GCs). We discuss the finely tuned regulatory mechanisms for IgA synthesis in GCs of Peyer's patches and emphasize the roles of CD4(+) T cells for IgA selection and the maintenance of appropriate gut microbial communities required for immune homeostasis.


Asunto(s)
Bacterias/inmunología , Tracto Gastrointestinal/inmunología , Inmunoglobulina A/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Homeostasis , Humanos , Ratones
10.
Int Immunol ; 25(3): 145-56, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23042789

RESUMEN

The transfer of nuclei of fully differentiated cells into enucleated oocytes is a well-recognized method for the generation of embryonic stem (ES) cells. Here, we demonstrate that nuclear transferred ES (NT-ES) cells can be established with high efficiency using innate-like B lymphocytes as donor cells. We established two mouse lines carrying rearranged immunoglobulin heavy and light chains using NT-ES cells containing nuclei from peritoneal cavity B1 cells. Analysis of B1 clone lines revealed that the B1-cell generation critically depends on the interaction between antigen (possibly self-antigen) and surface immunoglobulin, while the B1-cell maintenance requires the peritoneal environment. The B1-cell expansion takes place in spleen, and is held in check by competitor B2 cells. The results indicate that the NT-ES method could replace the transgenic or knock-in mouse approaches currently used to study the biology of cells that undergo somatic rearrangements of their antigen receptor genes.


Asunto(s)
Linfocitos B/inmunología , Células Madre Embrionarias/inmunología , Técnicas de Transferencia Nuclear , Cavidad Peritoneal/citología , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Reordenamiento Génico de Linfocito B , Inmunidad Innata/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Receptores de Antígenos de Linfocitos B/genética
11.
Proc Natl Acad Sci U S A ; 108(2): 722-7, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187378

RESUMEN

B1 cells represent a distinct subset of B cells that produce most of the natural serum IgM and much of the gut IgA and function as an important component of early immune responses to pathogens. The development of B1 cells depends on the nuclear factor of activated T cells c1 (NFATc1), a transcription factor abundantly expressed by B1 cells but not by conventional B2 cells. However, the factors that regulate the expression of NFATc1 in B1 cells remain unknown. Here we show that a vitamin A-deficient diet results in reduction of NFATc1 expression in B1 cells and almost complete loss of the B1 cell compartment. As a consequence, vitamin A-deficient mice have reduced serum IgM and are unable to mount T cell-independent antibody responses against bacterial antigens. We demonstrate that injection of all-trans retinoic acid induces the expression of NFATc1, particularly from the constitutive P2 promoter, and leads to the increase of the B1 cells. Thus, the retinoic acid-dependent pathway is critical for regulating NFATc1 expression and for maintenance of the natural memory B cell compartment.


Asunto(s)
Linfocitos B/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción NFATC/metabolismo , Linfocitos T/metabolismo , Activación Transcripcional , Vitamina A/metabolismo , Animales , Proliferación Celular , Separación Celular , Femenino , Citometría de Flujo/métodos , Ratones , Ratones Transgénicos , Receptores de Ácido Retinoico/metabolismo , Transcripción Genética
12.
Immunol Rev ; 237(1): 180-90, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20727036

RESUMEN

The gut harbors an extremely dense and complex community of microorganisms that are in constant dialog with our immune cells. The gut bacteria provide strong selective pressure to the host to evolve innate and adaptive immune responses required for the maintenance of local and systemic homeostasis. One of the most conspicuous responses of the gut immune system following microbial colonization is the production of immunoglobulin A (IgA). In this review, we discuss the roles of B-1 and B-2 cells in IgA-mediated immunity and present an updated view for the sites and mechanisms of IgA synthesis in the gut. We summarize the role of secretory IgAs for regulation of microbial communities and provide clues as to how the gut microbiota contributes to the development of the gut-associated lymphoid tissues.


Asunto(s)
Inmunidad Adaptativa/inmunología , Subgrupos de Linfocitos B/inmunología , Linfocitos B/inmunología , Inmunidad Innata/inmunología , Inmunoglobulina A/inmunología , Animales , Humanos
13.
Arthritis Rheumatol ; 74(4): 641-653, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34725966

RESUMEN

OBJECTIVE: T cell receptor (TCR) signaling abnormalities and gut dysbiosis are thought to be involved in the development of systemic lupus erythematosus (SLE). However, it is not known whether these mechanisms are interrelated. This study was undertaken to explore the impact of defective TCR signaling on microbiota-driven immune responses and the consequent triggering of systemic autoimmunity. METHODS: The responses of B6SKG mice harboring a mutation in ZAP-70 leading to spontaneous development of SLE were evaluated under specific pathogen-free (SPF) and germ-free (GF) conditions. The gut microbiome was analyzed using 16S ribosomal RNA sequencing. Secretory IgA production in the gut and follicular helper T (Tfh) cell development in the spleen and Peyer's patches were analyzed. Interleukin-17 (IL-17)-deficient mice and segmented filamentous bacteria (SFB)-specific TCR-transgenic mice were used to examine the role of IL-17 and thymic selection. RESULTS: SLE development in B6SKG mice was significantly more attenuated under GF conditions than under SPF conditions. The gut microbiota in B6SKG mice was altered, which was associated with the expansion of SFB and consequent development of SLE by driving Th17 cell differentiation, which was in turn blunted by IL-17 deficiency. Notably, although systemic Tfh development and autoantibody IgG response were enhanced, local gut Tfh and IgA responses were impaired. Moreover, experiments in SFB-specific TCR-transgenic mice revealed that this differential response was caused by altered thymic selection of self- and microbiota-reactive TCR because of defective TCR signaling. CONCLUSION: Our findings indicate that defective TCR signaling alters the gut microbiota and promotes systemic autoimmunity by driving Th17 cell differentiation.


Asunto(s)
Microbioma Gastrointestinal , Lupus Eritematoso Sistémico , Animales , Autoinmunidad , Modelos Animales de Enfermedad , Interleucina-17 , Lupus Eritematoso Sistémico/genética , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética
14.
Int Immunol ; 20(10): 1259-68, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18653699

RESUMEN

Regulation of dendritic cell (DC) function is critical for maintaining self-tolerance and preventing autoimmunity. The dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in cell-cell fusion of osteoclasts and foreign body giant cells, but though originally identified in DCs, its specific roles there remain undefined. Here, we report that aged DC-STAMP-deficient mice display several systemic autoimmune symptoms such as spontaneous lymphoproliferation, splenomegaly associated with infiltration of T cells in several organs and increased serum anti-double-stranded DNA antibody production. Although a lack of DC-STAMP did not inhibit DC differentiation or proliferation, antigen presentation activity of DC-STAMP-deficient DCs was significantly up-regulated in both class I and II pathways through increased phagocytotic activity compared with wild-type DCs, an activity likely leading to autoimmunity. Our results indicate that DC-STAMP is required for proper regulation of DC activity and maintenance of immune self-tolerance.


Asunto(s)
Presentación de Antígeno , Autoinmunidad/inmunología , Células Dendríticas/inmunología , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Fagocitosis/inmunología , Factores de Edad , Animales , Anticuerpos Antinucleares/sangre , Anticuerpos Antinucleares/genética , Autoinmunidad/genética , Movimiento Celular/genética , Movimiento Celular/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Antígenos H-2/genética , Antígenos H-2/inmunología , Antígenos H-2/metabolismo , Inmunidad Celular/genética , Activación de Linfocitos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Ovalbúmina , Fagocitosis/genética , Autotolerancia/genética , Autotolerancia/inmunología , Esplenomegalia/sangre , Esplenomegalia/genética , Linfocitos T/patología , Regulación hacia Arriba
15.
J Exp Med ; 215(8): 2019-2034, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30042191

RESUMEN

Immunoglobulin A (IgA) promotes health by regulating the composition and function of gut microbiota, but the molecular requirements for such homeostatic IgA function remain unknown. We found that a heavily glycosylated monoclonal IgA recognizing ovalbumin coats Bacteroides thetaiotaomicron (B. theta), a prominent gut symbiont of the phylum Bacteroidetes. In vivo, IgA alters the expression of polysaccharide utilization loci (PUL), including a functionally uncharacterized molecular family provisionally named Mucus-Associated Functional Factor (MAFF). In both mice and humans, MAFF is detected predominantly in mucus-resident bacteria, and its expression requires the presence of complex microbiota. Expression of the MAFF system facilitates symbiosis with other members of the phylum Firmicutes and promotes protection from a chemically induced model of colitis. Our data reveal a novel mechanism by which IgA promotes symbiosis and colonic homeostasis.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Inmunoglobulina A/metabolismo , Simbiosis , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Monoclonales/metabolismo , Bacterias/genética , Bacteroides/genética , Bacteroides/fisiología , Colon/metabolismo , Proteínas de Unión al ADN , Femenino , Regulación Bacteriana de la Expresión Génica , Glicosilación , Homeostasis , Humanos , Lipopolisacáridos/metabolismo , Factor de Transcripción MafF/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Modelos Biológicos , Moco/metabolismo , Proteínas Nucleares/metabolismo , Ovalbúmina/metabolismo , Fenotipo
16.
Cell Cycle ; 2(6): 585-90, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14512774

RESUMEN

Molecular chaperones recognize proteins of non-native structure, prevent them from irreversible intracellular aggregation, and then act with regulatory co-chaperones in the conversion of proteins to be properly folded and in a functional state. However, not every non-native protein is folded successfully. Those proteins that are not accurately folded/ refolded are then directed to the ubiquitin-proteasome system (UPS) for destruction. Both chaperones and proteasomes act jointly together for selective removal of proteins with aberrant structure so as to keep protein homeostasis in cells. Though the precise nature of the cooperative linkage between chaperone and UPS pathways remains largely elusive so far, accumulating evidence from in vivo and in vitro studies shed some light on the molecular mechanisms that link proteasomes and molecular chaperones. This review focuses on how unfolded proteins are handled by these two machineries.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal , Pliegue de Proteína , Subunidades de Proteína/metabolismo
17.
Nat Commun ; 6: 6734, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25828455

RESUMEN

Diet and the gut microbiota may underpin numerous human diseases. A major metabolic product of commensal bacteria are short-chain fatty acids (SCFAs) that derive from fermentation of dietary fibre. Here we show that diets deficient or low in fibre exacerbate colitis development, while very high intake of dietary fibre or the SCFA acetate protects against colitis. SCFAs binding to the 'metabolite-sensing' receptors GPR43 and GPR109A in non-haematopoietic cells mediate these protective effects. The inflammasome pathway has hitherto been reported as a principal pathway promoting gut epithelial integrity. SCFAs binding to GPR43 on colonic epithelial cells stimulates K(+) efflux and hyperpolarization, which lead to NLRP3 inflammasome activation. Dietary fibre also shapes gut bacterial ecology, resulting in bacterial species that are more effective for inflammasome activation. SCFAs and metabolite receptors thus explain health benefits of dietary fibre, and how metabolite signals feed through to a major pathway for gut homeostasis.


Asunto(s)
Proteínas Portadoras/efectos de los fármacos , Colitis/metabolismo , Colon/efectos de los fármacos , Fibras de la Dieta/farmacología , Ácidos Grasos Volátiles/metabolismo , Inflamasomas/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Acetatos/metabolismo , Animales , Butiratos/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Colon/metabolismo , Fermentación , Microbioma Gastrointestinal , Homeostasis/efectos de los fármacos , Inflamasomas/metabolismo , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores Acoplados a Proteínas G/genética , Receptores Nicotínicos/genética
18.
Gut Microbes ; 4(2): 165-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23333864

RESUMEN

A major function of immunoglobulin A (IgA) is to maintain balanced bacterial communities in the gut. We have previously shown that diversification of IgA upon somatic hypermutation (SHM) is critical for IgA function yet the principles governing the selection of IgA in the gut have remained elusive. Here we discuss recent progress in understanding this process as revealed by our studies in mice that lack the inhibitory co-receptor programmed cell death-1 (PD-1). We found that PD-1 affects the dynamics of germinal center (GC) B cells by controlling the number and the nature of T helper cells in the Peyer's patches (PPs). Deregulation of the T cell compartment impacts the selection of IgA plasma cells leading to gut dysbiosis. When the PD-1-dependent checkpoint is missing, gut bacteria go beyond the mucosal barrier and induce systemic GCs that can generate antibodies with auto-reactive properties.


Asunto(s)
Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Inmunoglobulina A/inmunología , Metagenoma/inmunología , Animales , Linfocitos B/inmunología , Centro Germinal/inmunología , Inmunidad Mucosa , Ratones , Ratones Noqueados , Ganglios Linfáticos Agregados/inmunología , Receptor de Muerte Celular Programada 1 , Linfocitos T/inmunología
19.
Science ; 336(6080): 485-9, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22539724

RESUMEN

Immunoglobulin A (IgA) is essential to maintain the symbiotic balance between gut bacterial communities and the host immune system. Here we provide evidence that the inhibitory co-receptor programmed cell death-1 (PD-1) regulates the gut microbiota through appropriate selection of IgA plasma cell repertoires. PD-1 deficiency generates an excess number of T follicular helper (T(FH)) cells with altered phenotypes, which results in dysregulated selection of IgA precursor cells in the germinal center of Peyer's patches. Consequently, the IgAs produced in PD-1-deficient mice have reduced bacteria-binding capacity, which causes alterations of microbial communities in the gut. Thus, PD-1 plays a critical role in regulation of antibody diversification required for the maintenance of intact mucosal barrier.


Asunto(s)
Linfocitos B/inmunología , Fenómenos Fisiológicos Bacterianos , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Intestino Delgado/microbiología , Receptor de Muerte Celular Programada 1/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Traslado Adoptivo , Animales , Bacterias/inmunología , Carga Bacteriana , Heces/microbiología , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Centro Germinal/citología , Centro Germinal/inmunología , Inmunoglobulina A/biosíntesis , Intestino Delgado/inmunología , Recuento de Linfocitos , Ratones , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Células Plasmáticas/inmunología , Células Plasmáticas/fisiología , Receptor de Muerte Celular Programada 1/genética , Simbiosis
20.
PLoS One ; 6(12): e29141, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216188

RESUMEN

Activation-induced cytidine deaminase (AID), produced by the Aicda gene, is essential for the immunoglobulin gene (Ig) alterations that form immune memory. Using a Cre-mediated genetic system, we unexpectedly found CD4(+) T cells that had expressed Aicda (exAID cells) as well as B cells. ExAID cells increased with age, reaching up to 25% of the CD4(+) and B220(+) cell populations. ExAID B cells remained IgM(+), suggesting that class-switched memory B cells do not accumulate in the spleen. In T cells, AID was expressed in a subset that produced IFN-γ and IL-10 but little IL-4 or IL-17, and showed no evidence of genetic mutation. Interestingly, the endogenous Aicda expression in T cells was enhanced in the absence of B cells, indicating that the process is independent from the germinal center reaction. These results suggest that in addition to its roles in B cells, AID may have previously unappreciated roles in T-cell function or tumorigenesis.


Asunto(s)
Envejecimiento/sangre , Linfocitos T CD4-Positivos/enzimología , Citidina Desaminasa/sangre , Interleucina-10/biosíntesis , Animales , Linfocitos T CD4-Positivos/metabolismo , Citidina Desaminasa/genética , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA