Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743625

RESUMEN

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Fosfatidilinositol 3-Quinasas , Proteínas Serina-Treonina Quinasas , Esferoides Celulares , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Esferoides Celulares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proliferación Celular , Línea Celular Tumoral , Sistemas CRISPR-Cas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
2.
J Immunol ; 198(7): 2735-2746, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242647

RESUMEN

Integration of signaling and metabolic pathways enables and sustains lymphocyte function. Whereas metabolic changes occurring during T cell activation are well characterized, the metabolic demands of differentiated T lymphocytes are largely unexplored. In this study, we defined the bioenergetics of Th17 effector cells generated in vivo. These cells depend on oxidative phosphorylation (OXPHOS) for energy and cytokine production. Mechanistically, the essential role of OXPHOS in Th17 cells results from their limited capacity to increase glycolysis in response to metabolic stresses. This metabolic program is observed in mouse and human Th17 cells, including those isolated from Crohn disease patients, and it is linked to disease, as inhibiting OXPHOS reduces the severity of murine colitis and psoriasis. These studies highlight the importance of analyzing metabolism in effector lymphocytes within in vivo inflammatory contexts and suggest a therapeutic role for manipulating OXPHOS in Th17-driven diseases.


Asunto(s)
Diferenciación Celular/inmunología , Colitis/inmunología , Activación de Linfocitos/inmunología , Fosforilación Oxidativa , Células Th17/inmunología , Animales , Separación Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
3.
Biochemistry ; 57(47): 6604-6614, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30365304

RESUMEN

Pancreatic cancer cells are characterized by deregulated metabolic programs that facilitate growth and resistance to oxidative stress. Among these programs, pancreatic cancers preferentially utilize a metabolic pathway through the enzyme aspartate aminotransferase 1 [also known as glutamate oxaloacetate transaminase 1 (GOT1)] to support cellular redox homeostasis. As such, small molecule inhibitors that target GOT1 could serve as starting points for the development of new therapies for pancreatic cancer. We ran a high-throughput screen for inhibitors of GOT1 and identified a small molecule, iGOT1-01, with in vitro GOT1 inhibitor activity. Application in pancreatic cancer cells revealed metabolic and growth inhibitory activity reflecting a promiscuous inhibitory profile. We then performed an in silico docking analysis to study inhibitor-GOT1 interactions with iGOT1-01 analogues that possess improved solubility and potency properties. These results suggested that the GOT1 inhibitor competed for binding to the pyridoxal 5-phosphate (PLP) cofactor site of GOT1. To analyze how the GOT1 inhibitor bound to GOT1, a series of GOT1 mutant enzymes that abolished PLP binding were generated. Application of the mutants in X-ray crystallography and thermal shift assays again suggested but were unable to formally conclude that the GOT1 inhibitor bound to the PLP site. Mutational studies revealed the relationship between PLP binding and the thermal stability of GOT1 while highlighting the essential nature of several residues for GOT1 catalytic activity. Insight into the mode of action of GOT1 inhibitors may provide leads to the development of drugs that target redox balance in pancreatic cancer.


Asunto(s)
Aspartato Aminotransferasa Citoplasmática/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Inhibidores Enzimáticos/farmacología , Mutación , Neoplasias Pancreáticas/patología , Aspartato Aminotransferasa Citoplasmática/genética , Aspartato Aminotransferasa Citoplasmática/metabolismo , Sitios de Unión , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Metabolómica , Modelos Moleculares , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Células Tumorales Cultivadas
4.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37904985

RESUMEN

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1- mediated growth suppression we developed a spheroid-based cell culture assay to study LKB1- dependent growth. Using this assay, along with genome-wide CRISPR screens and validation with orthogonal methods, we discovered that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase, which promotes the internalization of wild-type EGFR. Our findings reveal a new mechanism of regulation of EGFR, which may have implications for the treatment of LKB1 -mutant LUAD.

5.
Cancer Metab ; 8: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908776

RESUMEN

BACKGROUND: Metabolic programs in cancer cells are influenced by genotype and the tissue of origin. We have previously shown that central carbon metabolism is rewired in pancreatic ductal adenocarcinoma (PDA) to support proliferation through a glutamate oxaloacetate transaminase 1 (GOT1)-dependent pathway. METHODS: We utilized a doxycycline-inducible shRNA-mediated strategy to knockdown GOT1 in PDA and colorectal cancer (CRC) cell lines and tumor models of similar genotype. These cells were analyzed for the ability to form colonies and tumors to test if tissue type impacted GOT1 dependence. Additionally, the ability of GOT1 to impact the response to chemo- and radiotherapy was assessed. Mechanistically, the associated specimens were examined using a combination of steady-state and stable isotope tracing metabolomics strategies and computational modeling. Statistics were calculated using GraphPad Prism 7. One-way ANOVA was performed for experiments comparing multiple groups with one changing variable. Student's t test (unpaired, two-tailed) was performed when comparing two groups to each other. Metabolomics data comparing three PDA and three CRC cell lines were analyzed by performing Student's t test (unpaired, two-tailed) between all PDA metabolites and CRC metabolites. RESULTS: While PDA exhibits profound growth inhibition upon GOT1 knockdown, we found CRC to be insensitive. In PDA, but not CRC, GOT1 inhibition disrupted glycolysis, nucleotide metabolism, and redox homeostasis. These insights were leveraged in PDA, where we demonstrate that radiotherapy potently enhanced the effect of GOT1 inhibition on tumor growth. CONCLUSIONS: Taken together, these results illustrate the role of tissue type in dictating metabolic dependencies and provide new insights for targeting metabolism to treat PDA.

6.
Cell Rep ; 27(7): 1991-2001.e5, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091439

RESUMEN

Insulin stimulates the conversion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Here, we show that the loss of PIP4Ks (PIP4K2A, PIP4K2B, and PIP4K2C) in vitro results in a paradoxical increase in PI(4,5)P2 and a concomitant increase in insulin-stimulated production of PI(3,4,5)P3. The reintroduction of either wild-type or kinase-dead mutants of the PIP4Ks restored cellular PI(4,5)P2 levels and insulin stimulation of the PI3K pathway, suggesting a catalytic-independent role of PIP4Ks in regulating PI(4,5)P2 levels. These effects are explained by an increase in PIP5K activity upon the deletion of PIP4Ks, which normally suppresses PIP5K activity through a direct binding interaction mediated by the N-terminal motif VMLΦPDD of PIP4K. Our work uncovers an allosteric function of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3 and suggests that the pharmacological depletion of PIP4K enzymes could represent a strategy for enhancing insulin signaling.


Asunto(s)
Insulina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Animales , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
7.
Nat Commun ; 9(1): 4945, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470748

RESUMEN

Oncogenic KRAS is the key driver of pancreatic ductal adenocarcinoma (PDAC). We previously described a role for KRAS in PDAC tumor maintenance through rewiring of cellular metabolism to support proliferation. Understanding the details of this metabolic reprogramming in human PDAC may provide novel therapeutic opportunities. Here we show that the dependence on oncogenic KRAS correlates with specific metabolic profiles that involve maintenance of nucleotide pools as key mediators of KRAS-dependence. KRAS promotes these effects by activating a MAPK-dependent signaling pathway leading to MYC upregulation and transcription of the non-oxidative pentose phosphate pathway (PPP) gene RPIA, which results in nucleotide biosynthesis. The use of MEK inhibitors recapitulates the KRAS-dependence pattern and the expected metabolic changes. Antagonizing the PPP or pyrimidine biosynthesis inhibits the growth of KRAS-resistant cells. Together, these data reveal differential metabolic rewiring between KRAS-resistant and sensitive cells, and demonstrate that targeting nucleotide metabolism can overcome resistance to KRAS/MEK inhibition.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pirimidinas/biosíntesis , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Vía de Pentosa Fosfato/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas p21(ras)/genética
8.
Mol Cell Biol ; 38(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29180510

RESUMEN

The cellular response to DNA damage is an intricate mechanism that involves the interplay among several pathways. In this study, we provide evidence of the roles of the polyadenylation factor cleavage stimulation factor 50 (CstF-50) and the ubiquitin (Ub) escort factor p97 as cofactors of BRCA1/BARD1 E3 Ub ligase, facilitating chromatin remodeling during the DNA damage response (DDR). CstF-50 and p97 formed complexes with BRCA1/BARD1, Ub, and some BRCA1/BARD1 substrates, such as RNA polymerase (RNAP) II and histones. Furthermore, CstF-50 and p97 had an additive effect on the activation of the ubiquitination of these BRCA1/BARD1 substrates during DDR. Importantly, as a result of these functional interactions, BRCA1/BARD1/CstF-50/p97 had a specific effect on the chromatin structure of genes that were differentially expressed. This study provides new insights into the roles of RNA processing, BRCA1/BARD1, the Ub pathway, and chromatin structure during DDR.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteína BRCA1/genética , Ensamble y Desensamble de Cromatina , Factor de Estimulación del Desdoblamiento/genética , Daño del ADN , Reparación del ADN , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Adenosina Trifosfatasas/metabolismo , Proteína BRCA1/metabolismo , Factor de Estimulación del Desdoblamiento/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Factores de Escisión y Poliadenilación de ARNm/metabolismo
9.
Cancer Cell ; 32(1): 71-87.e7, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28697344

RESUMEN

Poor response to cancer therapy due to resistance remains a clinical challenge. The present study establishes a widely prevalent mechanism of resistance to gemcitabine in pancreatic cancer, whereby increased glycolytic flux leads to glucose addiction in cancer cells and a corresponding increase in pyrimidine biosynthesis to enhance the intrinsic levels of deoxycytidine triphosphate (dCTP). Increased levels of dCTP diminish the effective levels of gemcitabine through molecular competition. We also demonstrate that MUC1-regulated stabilization of hypoxia inducible factor-1α (HIF-1α) mediates such metabolic reprogramming. Targeting HIF-1α or de novo pyrimidine biosynthesis, in combination with gemcitabine, strongly diminishes tumor burden. Finally, reduced expression of TKT and CTPS, which regulate flux into pyrimidine biosynthesis, correlates with better prognosis in pancreatic cancer patients on fluoropyrimidine analogs.


Asunto(s)
Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Glucosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mucina-1/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Carbono/metabolismo , Desoxicitidina/uso terapéutico , Digoxina/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Vía de Pentosa Fosfato , Pronóstico , Pirimidinas/biosíntesis , Transducción de Señal , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA