Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 27(4): 4976-4989, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876105

RESUMEN

We theoretically investigate a new class of silicon waveguides for achieving Stimulated Brillouin Scattering (SBS) in the mid-infrared (MIR). The waveguide consists of a rectangular core supporting a low-loss optical mode, suspended in air by a series of transverse ribs. The ribs are patterned to form a finite quasi-one-dimensional phononic crystal, with the complete stopband suppressing the transverse leakage of acoustic waves, confining them to the core of the waveguide. We derive a theoretical formalism that can be used to compute the opto-acoustic interaction in such periodic structures, and find forward intramodal-SBS gains up to 1750 m-1W-1, which compares favorably with the proposed MIR SBS designs based on buried germanium waveguides. This large gain is achieved thanks to the nearly complete suppression of acoustic radiative losses.

2.
Opt Express ; 27(16): 22302-22315, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510526

RESUMEN

Recent developments of photonic integrated circuits for the mid-infrared band has opened up a new field of attractive applications for group IV photonics. Grating couplers, formed as diffractive structures on the chip surface, are key components for input and output coupling in integrated photonic platforms. While near-infrared optical fibers exhibit large mode field diameters compared to the wavelength, in the long-wave regime commercially available single-mode optical fibers have mode field diameters of the order of the operating wavelength. Consequently, an efficient fiber-chip surface coupler designed for the long-wave infrared range must radiate the power propagating in the waveguide with a higher radiation strength than a conventional grating coupler in the near-infrared range. In this article, we leverage the short electrical length required for long-wave infrared couplers to design a broadband all-dielectric micro-antenna for a suspended germanium platform at 7.67 µm. The design methodology is inspired by fundamental grating coupler equations, which remain valid even when the micro-antenna has only two or three diffractive elements. A simulated coupling efficiency of ~ 40% is achieved with a 1-dB bandwidth broader than 430 nm, which is almost twice the typical fractional bandwidth of a conventional grating coupler. In addition, the proposed design is markedly tolerant to fiber tilt misalignments of ±10°. This all-dielectric micro-antenna design paves the way for efficient fiber-chip coupling in long-wavelength mid-infrared integrated platforms.

3.
Opt Express ; 27(5): 7365-7372, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876301

RESUMEN

In this paper, we report the generation of an ultra-sharp asymmetric resonance spectrum through Fano-like interference. This generation is accomplished by weakly coupling a high-quality factor (Q factor) Fabry-Pérot (FP) cavity and a low-Q factor FP cavity through evanescent waves. The high-Q FP cavity is formed by Sagnac loop mirrors, whilst the low-Q one is built by partially transmitting Sagnac loop reflectors. The working principle has been analytically established and numerically modelled by using temporal coupled-mode-theory (CMT), and verified using a prototype device fabricated on the 340 nm silicon-on-insulator (SOI) platform, patterned by deep ultraviolet (DUV) lithography. Pronounced asymmetric resonances with slopes up to 0.77 dB/pm have been successfully measured, which, to the best of our knowledge, is higher than the results reported in state-of-the-art devices in on-chip integrated Si photonic studies. The established theoretical analysis method can provide excellent design guidelines for devices with Fano-like resonances. The design principle can be applied to ultra-sensitive sensing, ultra-high extinction ratio switching, and more applications.

4.
Opt Lett ; 44(4): 915-918, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30768019

RESUMEN

Experimental demonstrations of silicon-on-insulator waveguide-based free-carrier effect modulators operating at 3.8 µm are presented. PIN diodes are used to inject carriers into the waveguides, and are configured to (a) use free-carrier electroabsorption to create a variable optical attenuator with 34 dB modulation depth and (b) use free-carrier electrorefraction with the PIN diodes acting as phase shifters in a Mach-Zehnder interferometer, achieving a VπLπ of 0.052 V·mm and a DC modulation depth of 22 dB. Modulation is demonstrated at data rates up to 125 Mbit/s.

5.
Opt Lett ; 43(24): 5997-6000, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30547989

RESUMEN

Germanium is a material of high interest for mid-infrared (MIR) integrated photonics due to its complementary metal-oxide-semiconductor (CMOS) compatibility and its wide transparency window covering the 2-15 µm spectral region exceeding the 4 and 8 µm limit of the silicon-on-insulator platform and Si material, respectively. In this Letter, we report suspended germanium waveguides operating at a wavelength of 7.67 µm with a propagation loss of 2.6±0.3 dB/cm. To the best of our knowledge, this is the first demonstration of low-loss suspended germanium waveguides at such a long wavelength. Suspension of the waveguide is achieved by defining holes alongside the core providing access to the buried oxide layer and the underlying Si layer so that they can be wet etched using hydrofluoric acid and tetramethylammonium hydroxide, respectively. Our MIR waveguides create a new path toward long wavelength sensing in the fingerprint region.

6.
Opt Lett ; 43(4): 795-798, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29443996

RESUMEN

In this Letter, we report suspended silicon waveguides operating at a wavelength of 7.67 µm with a propagation loss of 3.1±0.3 dB/cm. To our knowledge, this is the first demonstration of low-loss silicon waveguides at such a long wavelength, with loss comparable to other platforms that use more exotic materials. The suspended Si waveguide core is supported by a sub-wavelength grating that provides lateral optical confinement while also allowing access to the buried oxide layer so that it can be wet etched using hydrofluoric acid. We also demonstrate low-loss waveguide bends and s-bends.

7.
Opt Express ; 24(20): 22908-22916, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828358

RESUMEN

We present several fundamental photonic building blocks based on suspended silicon waveguides supported by a lateral cladding comprising subwavelength grating metamaterial. We discuss the design, fabrication, and characterization of waveguide bends, multimode interference devices and Mach-Zehnder interferometers for the 3715 - 3800 nm wavelength range, demonstrated for the first time in this platform. The waveguide propagation loss of 0.82 dB/cm is reported, some of the lowest loss yet achieved in silicon waveguides for this wavelength range. These results establish a direct path to ultimately extending the operational wavelength range of silicon wire waveguides to the entire transparency window of silicon.

8.
Opt Express ; 24(9): 9465-72, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137560

RESUMEN

A compact (1.2 mm2) fully integrated mid-IR spectrometer operating in the 3 µm wavelength range is presented. To our knowledge this is the longest wavelength integrated spectrometer operating in the important wavelength window for spectroscopy of organic compounds. The spectrometer is based on a silicon-on-insulator arrayed waveguide grating filter. An array of InAs0.91Sb0.09 p-i-n photodiodes is heterogeneously integrated on the spectrometers output grating couplers using adhesive bonding. The spectrometer insertion loss is less than 3 dB and the waveguide-referred responsivity of the integrated photodiodes at room temperature is 0.3 A/W.

9.
Opt Express ; 22(1): 1077-84, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24515067

RESUMEN

Grating couplers are used to efficiently couple light from an optical fibre to a silicon waveguide as they allow light to be coupled into or out from any location on the device without the need for cleaving. However, using the typical surface relief grating fabrication method reduces surface planarity and hence makes further processing more difficult. The ability to manufacture high quality material layers on top of a grating coupler allows multiple active optical layers to be realized for multi-layer integrated optical circuits, and may enable monolithic integration of optical and electronic circuits on separate layers. Furthermore, the nature of the refractive index change may enable removal via rapid thermal annealing for wafer scale testing applications. We demonstrate for the first time a coupling device utilising a refractive index change introduced by lattice disorder. Simulations show 44% of the power can be extracted from the waveguide by using uniform implanted gratings, which is not dissimilar to the performance of typical uniform surface relief gratings currently used. Losses determined empirically, of 5.5 dB per coupler have been demonstrated.

10.
Opt Express ; 22(9): 10825-30, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921782

RESUMEN

Recently the 2µm wavelength region has emerged as an exciting prospect for the next generation of telecommunications. In this paper we experimentally characterise silicon based plasma dispersion effect optical modulation and defect based photodetection in the 2-2.5µm wavelength range. It is shown that the effectiveness of the plasma dispersion effect is dramatically increased in this wavelength window as compared to the traditional telecommunications wavelengths of 1.3µm and 1.55µm. Experimental results from the defect based photodetectors show that detection is achieved in the 2-2.5µm wavelength range, however the responsivity is reduced as the wavelength is increased away from 1.55µm.

11.
Opt Lett ; 39(19): 5661-4, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25360953

RESUMEN

We present a new type of mid-infrared silicon-on-insulator (SOI) waveguide. The waveguide comprises a sub-wavelength lattice of holes acting as lateral cladding while at the same time allowing for the bottom oxide (BOX) removal by etching. The waveguide loss is determined at the wavelength of 3.8 µm for structures before and after being underetched using both vapor phase and liquid hydrofluoric acid (HF). A propagation loss of 3.4 dB/cm was measured for a design with a 300 nm grating period and 150 nm holes after partial removal (560 nm) of BOX by vapor phase HF etching. We also demonstrate an alternative design with 550 nm period and 450 nm holes, which allows a faster and complete removal of the BOX by liquid phase HF etching, yielding the waveguide propagation loss of 3.6 dB/cm.

12.
Opt Lett ; 39(6): 1406-9, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24690799

RESUMEN

A low-cost and high-performance wavelength division (de)multiplexing structure in the mid-IR wavelength range is demonstrated on the silicon-on-insulator platform using an interleaved angled multimode interferometer (AMMI). As compared to a single AMMI, the channel count was doubled and the channel spacing halved with negligible extra insertion loss and crosstalk and with only a slight increase in device footprint. The device requires only single lithography and etching steps for fabrication. Potential is also shown for achieving improved performance with further optimized design.

13.
Opt Express ; 21(10): 11659-69, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736389

RESUMEN

The design and characterization of silicon-on-insulator mid-infrared spectrometers operating at 3.8 µm is reported. The devices are fabricated on 200 mm SOI wafers in a CMOS pilot line. Both arrayed waveguide grating structures and planar concave grating structures were designed and tested. Low insertion loss (1.5-2.5 dB) and good crosstalk characteristics (15-20 dB) are demonstrated, together with waveguide propagation losses in the range of 3 to 6 dB/cm.


Asunto(s)
Refractometría/instrumentación , Silicio/química , Espectrofotometría Infrarroja/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo
14.
Opt Lett ; 36(23): 4488-90, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139218

RESUMEN

We proposed and experimentally demonstrated wavelength division (de)multiplexers (WDMs) utilizing the wavelength dispersive nature of self-imaging multimode interferometers. Proof-of-principle devices fabricated on the silicon-on-insulator platform operated as 4-channel WDMs with a free spectral range of >90 nm, an averaging cross talk of <-20 dB for a 1 nm band, and an insertion loss of <2.0 dB. The potential for higher channel counts and smaller channel wavelength spacing was also predicted. This type of WDM is easy to design and fabricate. The underlying concept is applicable to all planar waveguide platforms.

15.
Opt Express ; 16(24): 19779-84, 2008 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19030063

RESUMEN

We investigate the effect of silicon ion irradiation on free carrier lifetime in silicon waveguides, and thus its ability to reduce the density of two-photon-absorption (TPA) generated free carriers. Our experimental results show that free carrier lifetime can be reduced significantly by silicon ion implantation. Associated excess optical absorption from the implanted ions can be reduced to an acceptable level if irradiation energy and dose are correctly chosen. Simulations of Raman scattering suggest that net gain can be achieved in certain cases without the need for an integrated diode in reverse bias to remove the photo-generated free carriers.

16.
Opt Express ; 15(9): 5879-84, 2007 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19532847

RESUMEN

The trend in silicon photonics, in the last few years has been to reduce waveguide size to obtain maximum gain in the real estate of devices as well as to increase the performance of active devices. Using different methods for the modulation, optical modulators in silicon have seen their bandwidth increased to reach multi GHz frequencies. In order to simplify fabrication, one requirement for a waveguide, as well as for a modulator, is to retain polarisation independence in any state of operation and to be as small as possible. In this paper we provide a way to obtain polarization independence and improve the efficiency of an optical modulator using a V-shaped pn junction base on the natural etch angle of silicon, 54.7 deg. This modulator is compared to a flat junction depletion type modulator of the same size and doping concentration.

17.
R Soc Open Sci ; 2(10): 150270, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26587242

RESUMEN

We have demonstrated a bidirectional wavelength division (de)multiplexer (WDM) on the silicon-on-insulator platform using two 4-channel angled multimode interferometers (AMMIs) sharing the same multimode interference waveguide. An excellent match of the peak transmission wavelength of each channel between the two AMMIs was achieved. The input and output access waveguides were arranged in a configuration such that the propagation of light of one AMMI in the multimode interference waveguide suffered minimal perturbation by the input and output waveguides of the other AMMI. This type of device is ideal for the WDM system for datacom or telecom applications, e.g. an integrated optical transceiver, where the transmission wavelengths are required to match with the receiving wavelengths. The device also benefits from simple fabrication (as only a single lithography and etching step is required), improved convenience for the transceiver layout design, a reduction in tuning power and circuitry and efficient use of layout space. A low insertion loss of 3-4 dB, and low crosstalk of -15 to -20 dB, was achieved.

18.
Opt Lett ; 34(5): 659-61, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19252584

RESUMEN

We have successfully fabricated low-loss silicon-on-oxidized-porous-silicon (SOPS) strip waveguides with high-index contrast using focused proton-beam irradiation and electrochemical etching. Smooth surface quality with rms roughness of 3.1 nm is achieved for a fluence of 1x10(15)/cm(2) after postoxidation treatment. Optical characterization at a wavelength of 1550 nm shows a loss of 1.1+/-0.4 dB/cm and 1.2+/-0.4 dB/cm in TE and TM polarization respectively, which we believe is the lowest reported loss for SOPS waveguides. This opens up new opportunities for all-silicon-based optoelectronics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA