Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36353841

RESUMEN

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Asunto(s)
Secuestro de Carbono , Ecosistema , Suelo , Dióxido de Carbono/análisis , Tundra , Regiones Árticas , Ciclo del Carbono , Plantas , Carbono/análisis
2.
Proc Natl Acad Sci U S A ; 114(24): 6238-6243, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559346

RESUMEN

Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.

3.
Glob Chang Biol ; 25(5): 1746-1764, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30681758

RESUMEN

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2 ) and methane (CH4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2 -C m-2  day-1 ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2 -C m-2  day-1 , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (14 C) of respired CO2 , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2 , CH4 , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Hielos Perennes , Regiones Árticas , Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Metano/análisis , Metano/metabolismo , Oxidación-Reducción , Hielos Perennes/química , Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(15): 4594-9, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25831506

RESUMEN

Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


Asunto(s)
Cambio Climático , Clima , Ecosistema , Humedales , Dióxido de Carbono/metabolismo , Ecología/métodos , Geografía , Actividades Humanas , Humanos , Metano/metabolismo , Modelos Teóricos , Óxido Nitroso/metabolismo , Plantas/clasificación , Plantas/metabolismo , Temperatura , Incertidumbre
5.
Nature ; 456(7222): 628-30, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19052625

RESUMEN

Terrestrial wetland emissions are the largest single source of the greenhouse gas methane. Northern high-latitude wetlands contribute significantly to the overall methane emissions from wetlands, but the relative source distribution between tropical and high-latitude wetlands remains uncertain. As a result, not all the observed spatial and seasonal patterns of atmospheric methane concentrations can be satisfactorily explained, particularly for high northern latitudes. For example, a late-autumn shoulder is consistently observed in the seasonal cycles of atmospheric methane at high-latitude sites, but the sources responsible for these increased methane concentrations remain uncertain. Here we report a data set that extends hourly methane flux measurements from a high Arctic setting into the late autumn and early winter, during the onset of soil freezing. We find that emissions fall to a low steady level after the growing season but then increase significantly during the freeze-in period. The integral of emissions during the freeze-in period is approximately equal to the amount of methane emitted during the entire summer season. Three-dimensional atmospheric chemistry and transport model simulations of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60 degrees N. Our findings suggest that permafrost-associated freeze-in bursts of methane emissions from tundra regions could be an important and so far unrecognized component of the seasonal distribution of methane emissions from high latitudes.


Asunto(s)
Atmósfera/química , Congelación , Metano/metabolismo , Humedales , Regiones Árticas , Clima Frío , Groenlandia , Metano/análisis , Estaciones del Año , Suelo/análisis
6.
Sci Rep ; 13(1): 2828, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36806215

RESUMEN

In this study, we hypothesised that the actual development stage (i.e., current age of the ecosystem) is a determining factor for the magnitude of methane production and emissions in young, northern high-latitude peatlands. We demonstrate that the earliest development of peat soil imposes a sink-to-source shift in the greenhouse warming potential of emerging peatlands in response to climate change that holds feedback mechanisms of importance for short-term (< 100 years) climate warming.

7.
Ambio ; 41 Suppl 3: 207-17, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22864695

RESUMEN

This article reports a dataset on 8 years of monitoring carbon fluxes in a subarctic palsa mire based on micrometeorological eddy covariance measurements. The mire is a complex with wet minerotrophic areas and elevated dry palsa as well as intermediate sub-ecosystems. The measurements document primarily the emission originating from the wet parts of the mire dominated by a rather homogenous cover of Eriophorum angustifolium. The CO(2)/CH(4) flux measurements performed during the years 2001-2008 showed that the areas represented in the measurements were a relatively stable sink of carbon with an average annual rate of uptake amounting to on average -46 g C m(-2) y(-1) including an equally stable loss through CH(4) emissions (18-22 g CH(4)-C m(-2) y(-1)). This consistent carbon sink combined with substantial CH(4) emissions is most likely what is to be expected as the permafrost under palsa mires degrades in response to climate warming.


Asunto(s)
Ciclo del Carbono , Ecosistema , Monitoreo del Ambiente/métodos , Tiempo (Meteorología) , Regiones Árticas , Estaciones del Año , Suecia , Temperatura , Factores de Tiempo
8.
Sci Total Environ ; 819: 153161, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051474

RESUMEN

Methane is an important greenhouse gas, and emissions are expected to rise in Arctic wetland ecosystems when temperatures increase due to climate change. However, current emission estimates are associated with large uncertainties because methane shows high spatial variability. A central problem is that existing methods are often spatially restricted due to limitations in access, cost, power availability, and in need of high maintenance levels. Our study explores how a setup consisting of an unmanned aerial vehicle and a high-precision trace gas analyzer can complement well-established methods, like mobile flux chambers and eddy covariance towers, by providing independent maps of spatial variability in emissions at the landscape scale. In Zackenberg Valley, Northeast Greenland, we mapped concentration measurements from a high-precision trace gas analyzer with a reported precision of 0.6 parts per billion in a high-Arctic tundra fen ecosystem. We connected the analyzer via a long tube to a consumer-grade quadcopter, finding that the combined setup could differentiate near-surface methane concentrations of less than 5 parts per billion within a few meters under favorable weather conditions. Five of ten campaigns showed that relative methane concentration hot spots and cold spots significantly correlated with areas showing relatively high and low emissions (ranging from 1.40 to 7.4 mg m-2 h-1) during study campaigns in previous years. Concurrent measurements in a stationary automated chamber setup showed comparatively low methane emissions (~0.1 to 3.9 mg m-2 h-1) compared to previous years, indicating that a further improved UAV-analyzer setup could demonstrate clear differences in an ecosystem where methane emissions are generally higher. Calm conditions with some degree of air mixing near the surface were best suited for the mapping. Windy and wet conditions should be avoided, both for the reliability of the mapping and for safely navigating the unmanned aerial vehicle.


Asunto(s)
Ecosistema , Metano , Regiones Árticas , Reproducibilidad de los Resultados , Tundra , Humedales
9.
HardwareX ; 12: e00331, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35795086

RESUMEN

Climate change is rapidly altering the Arctic environment. Although long-term environmental observations have been made at a few locations in the Arctic, the incomplete coverage from ground stations is a main limitation to observations in these remote areas. Here we present a wind and sun powered multi-purpose mobile observatory (ARC-MO) that enables near real time measurements of air, ice, land, rivers, and marine parameters in remote off-grid areas. Two test units were constructed and placed in Northeast Greenland where they have collected data from cabled and wireless instruments deployed in the environment since late summer 2021. The two units can communicate locally via WiFi (units placed 25 km apart) and transmit near-real time data globally over satellite. Data are streamed live and accessible from (https://gios.org). The cost of one mobile observatory unit is c. 304.000€. These test units demonstrate the possibility for integrative and automated environmental data collection in remote coastal areas and could serve as models for a proposed global observatory system.

10.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314726

RESUMEN

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Asunto(s)
Secuestro de Carbono , Ecosistema , Regiones Árticas , Dióxido de Carbono , Cambio Climático , Plantas , Estaciones del Año , Suelo , Tundra
11.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316310

RESUMEN

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Asunto(s)
Ecosistema , Hielos Perennes , Estaciones del Año , Regiones Árticas , Cambio Climático
12.
Ambio ; 46(Suppl 1): 70-80, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28116692

RESUMEN

Methane (CH4) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH4 source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components. The temporal separation was well-suited in NE Greenland, where the hypothesized slow-turnover carbon peaked at a time significantly related to the timing of snowmelt. The temporally wider component from fast-turnover carbon dominated the emissions in W Greenland and Svalbard. Altogether, we found no dependence of the total seasonal CH4 budget to the timing of snowmelt, and warmer sites and years tended to yield higher CH4 emissions.


Asunto(s)
Metano/análisis , Humedales , Regiones Árticas , Ciclo del Carbono , Cambio Climático , Seguimiento de Parámetros Ecológicos/instrumentación , Seguimiento de Parámetros Ecológicos/métodos , Groenlandia , Estaciones del Año , Nieve , Tundra
13.
Proc Natl Acad Sci U S A ; 104(36): 14401-5, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17728401

RESUMEN

Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability.


Asunto(s)
Bacterias/genética , Reparación del ADN/genética , ADN Bacteriano/genética , Secuencia de Bases , Amplificación de Genes/genética , Datos de Secuencia Molecular , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA