Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genet Sel Evol ; 56(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172652

RESUMEN

BACKGROUND: The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. RESULTS: The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. CONCLUSIONS: This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Animales , Genotipo , Cabras/genética , Filogenia
2.
J Dairy Sci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754834

RESUMEN

Typically, Swiss-type cheese is made from cow's milk. However, in the present work an attempt to expand the sheep supply chain and product offering in this field was made by developing a new type of cheese using Swiss-type cheese technology. The cheese was manufactured under industrial conditions, and fermentations were carried out using freeze-dried commercial starters that are traditionally used in the production of Swiss cheese. Two experimental "Ewiss cheese" (EC) products were produced using raw milk (RM-EC) and pasteurized milk (PM-EC), respectively. Fourteen microbial groups were investigated by plate counts from curd until ripened cheeses. According to microbiological analyses, no statistically significant differences were found between the 2 productions with respect to the group of lactic acid bacteria (LAB). The curds were mainly characterized by mesophilic LAB cocci (7.45 log10 cfu/g in RM-EC and 7.33 log10 cfu /g in PM-EC). However, at the end of the ripening period (9 mo), the cheeses exhibited a higher presence of mesophilic LAB rods. Undesired microbiological groups were found only in the curd of raw milk cheese in the range of 104-105 cfu/g, but reaching undetectable levels by plate count in the cheese at the end of ripening. RM-EC and PM-EC were characterized by 76% and 68% of dry matter, respectively. These cheeses contained 29.30% and 34.36% of protein, and 51.31% and 50.38% of fat, respectively. Textural analysis showed differences in terms of hardness, chewiness, and gumminess between the experimental cheeses and Swiss cheese sold on the market. These differences could be attributed to the higher protein content of ewe's milk. The main fatty acids in the cheeses were palmitic acid, myristic acid, oleic acid, and capric acid. Among the organic acids, RM-EC had higher concentrations of lactic acid, while PM-EC was higher in propionic acid. The ewe's cheeses emitted 46 volatile compounds, including acids, aldehydes, ketones, esters, alcohols, and other compounds. PM-EC was characterized by the main compounds of Swiss-type cheese: acetic acid, butyric acid, ethyl butyrate, ethyl caproate, propanoic acid, and tetramethylpyrazine. Sensory evaluation showed that the new dairy products were generally appreciated, and PM-EC was the most preferred by the judges. This research has enabled the development of new ewe's milk products, which could stimulate the valorization of a sector that has been long neglected and still has a large margin of improvement.

3.
Genet Sel Evol ; 55(1): 20, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959552

RESUMEN

BACKGROUND: Availability of single nucleotide polymorphism (SNP) genotyping arrays and progress in statistical analyses have allowed the identification of genomic regions and genes under selection in chicken. In this study, SNP data from the 600 K Affymetrix chicken array were used to detect signatures of selection in 23 local Italian chicken populations. The populations were categorized into four groups for comparative analysis based on live weight (heavy vs light) and geographical area (Northern vs Southern Italy). Putative signatures of selection were investigated by combining three extended haplotype homozygosity (EHH) statistical approaches to quantify excess of haplotype homozygosity within (iHS) and between (Rsb and XP-EHH) groups. Presence of runs of homozygosity (ROH) islands was also analysed for each group. RESULTS: After editing, 541 animals and 313,508 SNPs were available for statistical analyses. In total, 15 candidate genomic regions that are potentially under selection were detected among the four groups: eight within a group by iHS and seven by combining the results of Rsb and XP-EHH, which revealed divergent selection between the groups. The largest overlap between genomic regions identified to be under selection by the three approaches was on chicken chromosome 8. Twenty-one genomic regions were identified with the ROH approach but none of these overlapped with regions identified with the three EHH-derived statistics. Some of the identified regions under selection contained candidate genes with biological functions related to environmental stress, immune responses, and disease resistance, which indicate local adaptation of these chicken populations. CONCLUSIONS: Compared to commercial lines, local populations are predominantly reared as backyard chickens, and thus, may have developed stronger resistance to environmental challenges. Our results indicate that selection can play an important role in shaping signatures of selection in local chicken populations and can be a starting point to identify gene mutations that could have a useful role with respect to climate change.


Asunto(s)
Adaptación Fisiológica , Pollos , Genes , Genoma , Selección Genética , Pollos/clasificación , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/inmunología , Animales , Genoma/genética , Adaptación Fisiológica/genética , Haplotipos , Homocigoto , Polimorfismo de Nucleótido Simple , Italia , Predisposición Genética a la Enfermedad , Estrés Fisiológico/genética , Genética de Población , Genómica
4.
Genet Sel Evol ; 55(1): 24, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013467

RESUMEN

BACKGROUND: To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS: The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS: To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.


Asunto(s)
Variación Genética , Oveja Doméstica , Ovinos/genética , Animales , Oveja Doméstica/genética , Filogenia , Australia , Genotipo , Polimorfismo de Nucleótido Simple
5.
Anim Genet ; 54(5): 591-605, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37381662

RESUMEN

Analysis of genomic data is becoming more and more common for the effective management of livestock breeding programmes, even in the case of local populations. In this work, the genome-wide data of Nero Siciliano pig breed were compared to that of wild boar, Italian local and cosmopolitan breeds to investigate its genetic structure, and runs of homozygosity (ROH) and heterozygosity patterns. The Nero Siciliano has been reported to have the highest rate of genetic diversity among the Italian breeds, and a genetic variability comparable to that of the cosmopolitan breeds. Analyses of genomic structure and relationships underlined its proximity to wild boar, and an internal substructure probably linked to different family lines. The breed showed a low value of inbreeding estimated from ROH, and the highest diversity index among the Italian breeds, even if lower than that of the cosmopolitans. Four ROH islands in three chromosomes (SSC8, SSC11, and SSC14) and one heterozygosity-rich region (SSC1) were identified in Nero Siciliano, highlighting genomic regions related to productive QTL. Across breeds, SSC8 and SSC14 were the chromosomes with most ROH islands, with Mora Romagnola and wild boar showing the highest level of autozygosity. Chromosomes SSC2, SSC6, SSC8 and SSC13 showed the majority of runs of heterozygosity regions, mainly found in the cosmopolitan pig breeds, which reported several genes associated with health-related QTL. The outlined results can help to better identify the genomic profile of this local breed in order to plan matings, maintain adequate internal diversity and exploit the production system.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Porcinos , Animales , Genotipo , Homocigoto , Endogamia , Italia , Sus scrofa/genética
6.
J Dairy Sci ; 106(8): 5537-5553, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37291034

RESUMEN

Among Italian dairy cattle, the Holstein is the most reared breed for the production of Parmigiano Reggiano protected designation of origin cheese, which represents one of the most renowned products in the entire Italian dairy industry. In this work, we used a medium-density genome-wide data set consisting of 79,464 imputed SNPs to study the genetic structure of Italian Holstein breed, including the population reared in the area of Parmigiano Reggiano cheese production, and assessing its distinctiveness from the North American population. Multidimensional scaling and ADMIXTURE approaches were used to explore the genetic structure among populations. We also investigated putative genomic regions under selection among these 3 populations by combining 4 different statistical methods based either on allele frequencies (single marker and window-based) or extended haplotype homozygosity (EHH; standardized log-ratio of integrated EHH and cross-population EHH). The genetic structure results allowed us to clearly distinguish the 3 Holstein populations; however, the most remarkable difference was observed between Italian and North American stock. Selection signature analyses identified several significant SNPs falling within or closer to genes with known roles in several traits such as milk quality, resistance to disease, and fertility. In particular, a total of 22 genes related to milk production have been identified using the 2 allele frequency approaches. Among these, a convergent signal has been found in the VPS8 gene which resulted to be involved in milk traits, whereas other genes (CYP7B1, KSR2, C4A, LIPE, DCDC1, GPR20, and ST3GAL1) resulted to be associated with quantitative trait loci related to milk yield and composition in terms of fat and protein percentage. In contrast, a total of 7 genomic regions were identified combining the results of standardized log-ratio of integrated EHH and cross-population EHH. In these regions candidate genes for milk traits were also identified. Moreover, this was also confirmed by the enrichment analyses in which we found that the majority of the significantly enriched quantitative trait loci were linked to milk traits, whereas the gene ontology and pathway enrichment analysis pointed to molecular functions and biological processes involved in AA transmembrane transport and methane metabolism pathway. This study provides information on the genetic structure of the examined populations, showing that they are distinguishable from each other. Furthermore, the selection signature analyses can be considered as a starting point for future studies in the identification of causal mutations and consequent implementation of more practical application.


Asunto(s)
Genómica , Selección Genética , Bovinos/genética , Animales , Sitios de Carácter Cuantitativo , Fenotipo , Leche , Italia , Polimorfismo de Nucleótido Simple , América del Norte , Estudio de Asociación del Genoma Completo/veterinaria
7.
J Anim Breed Genet ; 140(1): 28-38, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36239218

RESUMEN

The effects of inbreeding in livestock species breeds have been well documented and they have a negative impact on profitability. The objective of this study was to evaluate the levels of inbreeding in Sarda (SAR, n = 785) and Valle del Belice (VdB, n = 473) dairy sheep breeds and their impact on milk production traits. Two inbreeding coefficients (F) were estimated: using pedigree (FPED ), or runs of homozygosity (ROH; FROH ) at different minimum ROH lengths and different ROH classes. After the quality control, 38,779 single nucleotide polymorphisms remained for further analyses. A mixed-linear model was used to evaluate the impact of inbreeding coefficients on production traits within each breed. VdB showed higher inbreeding coefficients compared to SAR, with both breeds showing lower estimates as the minimum ROH length increased. Significant inbreeding depression was found only for milk yield, with a loss of around 7 g/day (for SAR) and 9 g/day (VdB) for a 1% increase of FROH . The present study confirms how the use of genomic information can be used to manage intra-breed diversity and to calculate the effects of inbreeding on phenotypic traits.


Asunto(s)
Leche , Animales
8.
J Anim Breed Genet ; 140(5): 558-567, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37226373

RESUMEN

About three decades of breeding and selection in the Valle del Belìce sheep are expected to have left several genomic footprints related to milk production traits. In this study, we have assembled a dataset with 451 individuals of the Valle del Belìce sheep breed: 184 animals that underwent directional selection for milk production and 267 unselected animals, genotyped for 40,660 single-nucleotide polymorphisms (SNPs). Three different statistical approaches, both within (iHS and ROH) and between (Rsb) groups, were used to identify genomic regions potentially under selection. Population structure analyses separated all individuals according to their belonging to the two groups. A total of four genomic regions on two chromosomes were jointly identified by at least two statistical approaches. Several candidate genes for milk production were identified, corroborating the polygenic nature of this trait and which may provide clues to potential new selection targets. We also found candidate genes for growth and reproductive traits. Overall, the identified genes may explain the effect of selection to improve the performances related to milk production traits in the breed. Further studies using high-density array data, would be particularly relevant to refine and validate these results.


Asunto(s)
Genómica , Herencia Multifactorial , Animales , Ovinos/genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
9.
J Anim Breed Genet ; 139(5): 540-555, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35445758

RESUMEN

Purosangue Orientale Siciliano, Sanfratellano and Siciliano represent the Sicilian equine genetic resource. This study aimed to investigate the genetic diversity, population structure and the pattern of autozygosity of Sicilian horse populations using genome-wide single-nucleotide polymorphism (SNP) data generated with the Illumina Equine SNP70 array. The genotyping data of 17 European and Middle East populations were also included in the study. The patterns of genetic differentiation, model-based clustering and Neighbour-Net showed the expected positioning of Sicilian populations within the wide analysed framework and the close connections between the Purosangue Orientale Siciliano and the Arab as well as between Sanfratellano, Siciliano and Maremmano. The highest expected heterozygosity (He ) and contemporary effective population size (cNe) were reported in Siciliano (He  = 0.323, cNe = 397), and the lowest were reported in Purosangue Orientale Siciliano (He  = 0.277, cNe = 10). The analysis of the runs of homozygosity and the relative derived inbreeding revealed high internal homogeneity in Purosangue Orientale Siciliano and Arab horses, intermediate values in Maremmano and Sanfratellano and high heterogeneity in the Siciliano population. The genome-wide SNP analysis showed the selective pressure on Purosangue Orientale Siciliano towards traits related to endurance performance. Our results underline the importance of planning adequate conservation and exploitation programmes to reduce the level of inbreeding and, therefore, the loss of genetic diversity.


Asunto(s)
Genoma , Endogamia , Animales , Genoma/genética , Genotipo , Homocigoto , Caballos/genética , Polimorfismo de Nucleótido Simple , Densidad de Población
10.
Genet Sel Evol ; 53(1): 48, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078254

RESUMEN

BACKGROUND: During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. CONCLUSIONS: This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


Asunto(s)
Bovinos/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Selección Artificial , Distribución Animal , Animales , Teorema de Bayes , Evolución Molecular , Frecuencia de los Genes
11.
Genet Sel Evol ; 53(1): 92, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895134

RESUMEN

BACKGROUND: Climate and farming systems, several of which are considered as low-input agricultural systems, vary between goat populations from Northern and Southern Italy and have led to different management practices. These processes have impacted genome shaping in terms of inbreeding and regions under selection and resulted in differences between the northern and southern populations. Both inbreeding and signatures of selection can be pinpointed by the analysis of runs of homozygosity (ROH), which provides useful information to assist the management of this species in different rural areas. RESULTS: We analyzed the ROH distribution and inbreeding (FROH) in 902 goats from the Italian Goat Consortium2 dataset. We evaluated the differences in individual ROH number and length between goat breeds from Northern (NRD) and Central-southern (CSD) Italy. Then, we identified the signatures of selection that differentiate these two groups using three methods: ROH, ΔROH, and averaged FST. ROH analyses showed that some Italian goat breeds have a lower inbreeding coefficient, which is attributable to their management and history. ROH are longer in breeds that are undergoing non-optimal management or with small population size. In several small breeds, the ROH length classes are balanced, reflecting more accurate mating planning. The differences in climate and management between the NRD and CSD groups have resulted in different ROH lengths and numbers: the NRD populations bred in isolated valleys present more and shorter ROH segments, while the CSD populations have fewer and longer ROH, which is likely due to the fact that they have undergone more admixture events during the horizontal transhumance practice followed by a more recent standardization. We identified four genes within signatures of selection on chromosome 11 related to fertility in the NRD group, and 23 genes on chromosomes 5 and 6 related to growth in the CSD group. Finally, we identified 17 genes on chromosome 12 related to environmental adaptation and body size with high homozygosity in both groups. CONCLUSIONS: These results show how different management practices have impacted the level of genomic inbreeding in two Italian goat groups and could be useful to assist management in a low-input system while safeguarding the diversity of small populations.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Animales , Genoma , Cabras/genética , Homocigoto , Endogamia
12.
J Anim Breed Genet ; 138(5): 552-561, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34014003

RESUMEN

The aim of this study was to identify genomic regions underlying milk production traits in the Valle del Belice dairy sheep using regional heritability mapping (RHM). Repeated measurements for milk yield (MY), fat percentage and yield (F% and FY) and protein percentage and yield (P% and PY), collected over a period of 6 years (2006-2012) on 481 Valle del Belice ewes, were used for the analysis. Animals were genotyped with the Illumina 50k SNP chip. Variance components, heritabilities and repeatabilities within and across lactations were estimated, fitting parity, litter size, season of lambing and fortnights in milk, as fixed; and additive genetic, permanent environment within and across lactations, flock by test-day interaction and residual as random effects. For the RHM analysis, the model included the same fixed and random effects as before, plus an additional regional genomic additive effect (specific for the region being tested) as random. While the whole genomic additive effect was estimated using the genomic relationship matrix (GRM) constructed from all SNPs, the regional genomic additive effect was estimated from a GRM matrix constructed from the SNPs within each region. Heritability estimates ranged between 0.06 and 0.15, with repeatabilities being between 0.14 and 0.24 across lactations and between 0.23 and 0.39 within lactation for all milk production traits. A substantial effect of flock-test-day on milk production traits was also estimated. Significant genomic regions at either genome-wide (p < .05) or suggestive (i.e., one false positive per genome scan) level were identified on chromosome (OAR) 2, 3 and 20 for F% and on OAR3 for P%, with the regions on OAR3 in common between the two traits. Our results confirmed the role of LALBA and AQP genes, on OAR3, as candidate genes for milk production traits in sheep.


Asunto(s)
Lactancia , Leche , Oveja Doméstica/genética , Animales , Femenino , Genómica , Lactancia/genética , Fenotipo , Embarazo , Ovinos/genética
13.
Genet Sel Evol ; 52(1): 40, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664855

RESUMEN

BACKGROUND: Assessment of genetic diversity and population structure provides important control metrics to avoid genetic erosion, inbreeding depression and crossbreeding between exotic and locally-adapted cattle breeds since these events can have deleterious consequences and eventually lead to extinction. Historically, the Alpine Arc represents an important pocket of cattle biodiversity with a large number of autochthonous breeds that provide a fundamental source of income for the entire regional economy. By using genotype data from medium-density single nucleotide polymorphism (SNP) arrays, we performed a genome-wide comparative study of 23 cattle populations from the Alpine Arc and three cosmopolitan breeds. RESULTS: After filtering, we obtained a final genotyping dataset consisting of 30,176 SNPs for 711 individuals. The local breeds showed high or intermediate values of genetic diversity compared to the highly selected cosmopolitan breeds. Patterns of genetic differentiation, multidimensional scaling, admixture analysis and the constructed phylogenetic tree showed convergence, which indicates the presence of gene flow among the breeds according to both geographic origin and historical background. Among the most differentiated breeds, we identified the modern Brown cattle. In spite of admixture events, several local breeds have preserved distinctive characteristics, which is probably due to differences in genetic origin and geographic location. CONCLUSIONS: This study represents one of the most comprehensive genome-wide analysis of the Alpine cattle breeds to date. Using such a large dataset that includes the majority of the local breeds found in this region, allowed us to expand knowledge on the evaluation and status of Alpine cattle biodiversity. Our results indicate that although many of the analyzed local breeds are listed as endangered, they still harbor a large amount of genetic diversity, even when compared to some cosmopolitan breeds. This finding, together with the reconstruction of the phylogeny and the relationships between these Alpine Arc cattle breeds, provide crucial insights not only into the improvement of genetic stocks but also into the implementation of future conservation strategies.


Asunto(s)
Bovinos/genética , Filogenia , Polimorfismo de Nucleótido Simple , Animales , Bovinos/clasificación , Evolución Molecular , Genotipo
14.
Genet Sel Evol ; 52(1): 25, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32408891

RESUMEN

BACKGROUND: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. RESULTS: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed [Formula: see text] profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. CONCLUSIONS: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.


Asunto(s)
Genética de Población/métodos , Polimorfismo de Nucleótido Simple/genética , Ovinos/genética , Animales , Peninsula Balcánica , Cruzamiento/métodos , Domesticación , Pruebas Genéticas/métodos , Variación Genética/genética , Genotipo , Filogenia , Filogeografía/métodos
15.
J Anim Breed Genet ; 137(6): 609-621, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32219904

RESUMEN

The Valdostana is a local dual purpose cattle breed developed in Italy. Three populations are recognized within this breed, based on coat colour, production level, morphology and temperament: Valdostana Red Pied (VPR), Valdostana Black Pied (VPN) and Valdostana Chestnut (VCA). Here, we investigated putative genomic regions under selection among these three populations using the Bovine 50K SNP array by combining three different statistical methods based either on allele frequencies (FST ) or extended haplotype homozygosity (iHS and Rsb). In total, 8, 5 and 8 chromosomes harbouring 13, 13 and 16 genomic regions potentially under selection were identified by at least two approaches in VPR, VPN and VCA, respectively. Most of these candidate regions were population-specific but we found one common genomic region spanning 2.38 Mb on BTA06 which either overlaps or is located close to runs of homozygosity islands detected in the three populations. This region included inter alia two well-known genes: KDR, a well-established coat colour gene, and CLOCK, which plays a central role in positive regulation of inflammatory response and in the regulation of the mammalian circadian rhythm. The other candidate regions identified harboured genes associated mainly with milk and meat traits as well as genes involved in immune response/inflammation or associated with behavioural traits. This last category of genes was mainly identified in VCA, which is selected for fighting ability. Overall, our results provide, for the first time, a glimpse into regions of the genome targeted by selection in Valdostana cattle. Finally, this study illustrates the relevance of using multiple complementary approaches to identify genomic regions putatively under selection in livestock.


Asunto(s)
Conducta Animal , Genoma/genética , Sitios de Carácter Cuantitativo/genética , Selección Genética , Animales , Cruzamiento , Bovinos , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Genotipo , Haplotipos/genética , Homocigoto , Carne , Leche , Fenotipo , Polimorfismo de Nucleótido Simple/genética
16.
Mol Ecol ; 28(5): 1009-1029, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593690

RESUMEN

Domestic species such as cattle (Bos taurus taurus and B. t. indicus) represent attractive biological models to characterize the genetic basis of short-term evolutionary response to climate pressure induced by their post-domestication history. Here, using newly generated dense SNP genotyping data, we assessed the structuring of genetic diversity of 21 autochtonous cattle breeds from the whole Mediterranean basin and performed genome-wide association analyses with covariables discriminating the different Mediterranean climate subtypes. This provided insights into both the demographic and adaptive histories of Mediterranean cattle. In particular, a detailed functional annotation of genes surrounding variants associated with climate variations highlighted several biological functions involved in Mediterranean climate adaptation such as thermotolerance, UV protection, pathogen resistance or metabolism with strong candidate genes identified (e.g., NDUFB3, FBN1, METTL3, LEF1, ANTXR2 and TCF7). Accordingly, our results suggest that main selective pressures affecting cattle in Mediterranean area may have been related to variation in heat and UV exposure, in food resources availability and in exposure to pathogens, such as anthrax bacteria (Bacillus anthracis). Furthermore, the observed contribution of the three main bovine ancestries (indicine, European and African taurine) in these different populations suggested that adaptation to local climate conditions may have either relied on standing genomic variation of taurine origin, or adaptive introgression from indicine origin, depending on the local breed origins. Taken together, our results highlight the genetic uniqueness of local Mediterranean cattle breeds and strongly support conservation of these populations.


Asunto(s)
Aclimatación/genética , Variación Genética , Genómica , Animales , Cruzamiento , Bovinos , Mapeo Cromosómico , Clima , Genética de Población , Genoma , Genotipo , Filogenia , Termotolerancia/genética
17.
J Anim Breed Genet ; 136(6): 526-534, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31206848

RESUMEN

Selective breeding has led to modifications in the genome of many livestock breeds. In this study, we identified the genomic regions that may explain some of the phenotypic differences between two closely related breeds from Sardinia. A total of 44 animals, 20 Sardinian Ancestral Black (SAB) and 24 Sardinian White (SW), were genotyped using the Illumina Ovine 50K array. A total of 68, 38 and 15 significant markers were identified using the case-control genome-wide association study (GWAS), the Bayesian population differentiation analysis (FST ) and the Rsb metric, respectively. Comparisons among the approaches revealed a total of 22 overlapping markers between GWAS and FST and one marker between GWAS and Rsb. Three markers detected by Rsb were also located near (<2 Mb) to highly significant regions identified by GWAS and FST analyses. Moreover, one candidate marker identified by GWAS and FST approaches was located in a run of homozygosity island that was shared by both breeds. We identified several genes involved in many phenotypic differences (such as stature and growth, reproduction, ear size, coat colour, behaviour) between the two analysed breeds. This study shows that combining several genome-wide approaches could improve discovery of regions involved in the variability of breeding traits and responsible for the phenotypic diversity even between closely related breeds. Overall, the combination of such genome-wide methods can be extended to other livestock breeds that share between them a similar genetic background, to understand the process that shapes the patterns of genetic variability between closely related populations.


Asunto(s)
Genómica , Fenotipo , Ovinos/genética , Animales , Genotipo , Homocigoto , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple
18.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940848

RESUMEN

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Asunto(s)
Animales Domésticos/genética , Conservación de los Recursos Naturales/métodos , Variación Genética , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Bovinos , Evolución Molecular , Genética de Población , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Filogenia , Densidad de Población
19.
Genet Sel Evol ; 49(1): 84, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137622

RESUMEN

BACKGROUND: Because very large numbers of single nucleotide polymorphisms (SNPs) are now available throughout the genome, they are particularly suitable for the detection of genomic regions where a reduction in heterozygosity has occurred and they offer new opportunities to improve the accuracy of inbreeding ([Formula: see text]) estimates. Runs of homozygosity (ROH) are contiguous lengths of homozygous segments of the genome where the two haplotypes inherited from the parents are identical. Here, we investigated the occurrence and distribution of ROH using a medium-dense SNP panel to characterize autozygosity in 516 Valle del Belice sheep and to identify the genomic regions with high ROH frequencies. RESULTS: We identified 11,629 ROH and all individuals displayed at least one ROH longer than 1 Mb. The mean value of [Formula: see text] estimated from ROH longer than1 Mb was 0.084 ± 0.061. ROH that were shorter than 10 Mb predominated. The highest and lowest coverages of Ovis aries chromosomes (OAR) by ROH were on OAR24 and OAR1, respectively. The number of ROH per chromosome length displayed a specific pattern, with higher values for the first three chromosomes. Both number of ROH and length of the genome covered by ROH varied considerably between animals. Two hundred and thirty-nine SNPs were considered as candidate markers that may be under directional selection and we identified 107 potential candidate genes. Six genomic regions located on six chromosomes, corresponding to ROH islands, are presented as hotspots of autozygosity, which frequently coincided with regions of medium recombination rate. According to the KEGG database, most of these genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. A genome scan revealed the presence of ROH islands in genomic regions that harbor candidate genes for selection in response to environmental stress and which underlie local adaptation. CONCLUSIONS: These results suggest that natural selection has, at least partially, a role in shaping the genome of Valle del Belice sheep and that ROH in the ovine genome may help to detect genomic regions involved in the determinism of traits under selection.


Asunto(s)
Genética de Población , Homocigoto , Endogamia , Polimorfismo de Nucleótido Simple/genética , Ovinos/genética , Animales , Cromosomas/genética , Genotipo , Selección Genética
20.
BMC Genet ; 15: 108, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25928374

RESUMEN

BACKGROUND: The recent availability of sheep genome-wide SNP panels allows providing background information concerning genome structure in domestic animals. The aim of this work was to investigate the patterns of linkage disequilibrium (LD), the genetic diversity and population structure in Valle del Belice, Comisana, and Pinzirita dairy sheep breeds using the Illumina Ovine SNP50K Genotyping array. RESULTS: Average r (2) between adjacent SNPs across all chromosomes was 0.155 ± 0.204 for Valle del Belice, 0.156 ± 0.208 for Comisana, and 0.128 ± 0.188 for Pinzirita breeds, and some variations in LD value across chromosomes were observed, in particular for Valle del Belice and Comisana breeds. Average values of r (2) estimated for all pairwise combinations of SNPs pooled over all autosomes were 0.058 ± 0.023 for Valle del Belice, 0.056 ± 0.021 for Comisana, and 0.037 ± 0.017 for Pinzirita breeds. The LD declined as a function of distance and average r (2) was lower than the values observed in other sheep breeds. Consistency of results among the several used approaches (Principal component analysis, Bayesian clustering, F ST, Neighbor networks) showed that while Valle del Belice and Pinzirita breeds formed a unique cluster, Comisana breed showed the presence of substructure. In Valle del Belice breed, the high level of genetic differentiation within breed, the heterogeneous cluster in Admixture analysis, but at the same time the highest inbreeding coefficient, suggested that the breed had a wide genetic base with inbred individuals belonging to the same flock. The Sicilian breeds were characterized by low genetic differentiation and high level of admixture. Pinzirita breed displayed the highest genetic diversity (He, Ne) whereas the lowest value was found in Valle del Belice breed. CONCLUSIONS: This study has reported for the first time estimates of LD and genetic diversity from a genome-wide perspective in Sicilian dairy sheep breeds. Our results indicate that breeds formed non-overlapping clusters and are clearly separated populations and that Comisana sheep breed does not constitute a homogenous population. The information generated from this study has important implications for the design and applications of association studies as well as for development of conservation and/or selection breeding programs.


Asunto(s)
Oveja Doméstica/genética , Animales , Teorema de Bayes , Cruzamiento , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Modelos Genéticos , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Sicilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA