Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Chem Biol ; 2(4): 1263-1273, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34458840

RESUMEN

Fungal infections represent a global problem, notably for immunocompromised patients in hospital, COVID-19 patient wards and care home settings, and the ever-increasing emergence of multidrug resistant fungal strains is a sword of Damocles hanging over many healthcare systems. Azoles represent the mainstay of antifungal drugs, and their mode of action involves the binding mode of these molecules to the fungal lanosterol 14α-demethylase target enzyme. In this study, we have prepared and characterized four novel organometallic derivatives of the frontline antifungal drug fluconazole (1a-4a). Very importantly, enzyme inhibition and chemogenomic profiling demonstrated that lanosterol 14α-demethylase, as for fluconazole, was the main target of the most active compound of the series, (N-(ferrocenylmethyl)-2-(2,4-difluorophenyl)-2-hydroxy-N-methyl-3-(1H-1,2,4-triazol-1-yl)propan-1-aminium chloride, 2a). Transmission electron microscopy (TEM) studies suggested that 2a induced a loss in cell wall integrity as well as intracellular features ascribable to late apoptosis or necrosis. The impressive activity of 2a was further confirmed on clinical isolates, where antimycotic potency up to 400 times higher than fluconazole was observed. Also, 2a showed activity towards azole-resistant strains. This finding is very interesting since the primary target of 2a is the same as that of fluconazole, emphasizing the role played by the organometallic moiety. In vivo experiments in a mice model of Candida infections revealed that 2a reduced the fungal growth and dissemination but also ameliorated immunopathology, a finding suggesting that 2a is active in vivo with added activity on the host innate immune response.

2.
ACS Infect Dis ; 3(9): 645-652, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28686009

RESUMEN

Schistosomiasis is a parasitic disease that affects more than 250 million people annually, mostly children in poor, tropical, rural areas. Only one treatment (praziquantel) is available, putting control efforts at risk should resistance occur. In pursuit of treatment alternatives, we derivatized an old antischistosomal agent, oxamniquine (OXA). Four organometallic derivatives of OXA were synthesized and tested against Schistosoma mansoni in vitro and in vivo. Of these, a ferrocenyl derivative, 1, killed larval and adult worms 24 h postexposure in vitro, in contrast to OXA, which lacks in vitro activity against adult worms. A dose of 200 mg/kg of 1 completely eliminated the worm burden in mice. Subsequently, a ruthenocenyl (5) and a benzyl derivative (6) of OXA were synthesized to probe the importance of the ferrocenyl group in 1. Compounds 1, 5, and 6 were lethal to both S. mansoni and S. haematobium adults in vitro. In vivo, at 100 mg/kg, all three compounds revealed S. mansoni worm burden reductions of 76 to 93%, commensurate with OXA. Our findings present three compounds with activity against S. mansoni in vitro, comparable activity in vivo, and high activity against S. haematobium in vitro. These compounds may possess a different binding mode or mode of action compared to OXA and present excellent starting points for further SAR studies.


Asunto(s)
Antihelmínticos/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Oxamniquina/análogos & derivados , Esquistosomiasis Urinaria/tratamiento farmacológico , Esquistosomiasis mansoni/tratamiento farmacológico , Animales , Antihelmínticos/síntesis química , Antihelmínticos/química , Antihelmínticos/farmacología , Química Farmacéutica , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Schistosoma haematobium/efectos de los fármacos , Schistosoma mansoni/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA