Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Oral Maxillofac Surg ; 80(5): 798-813, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35157828

RESUMEN

PURPOSE: Metallic temporomandibular joint replacement (TMJR) systems vary depending on design, material composition, and manufacturing methods such as casting, forging, and additive manufacturing. Therefore, the purpose of this study was to measure the association between manufacturing process of TMJR systems in terms of microstructure and electrochemical properties. MATERIALS AND METHODS: The sample was composed of new or surgically retrieved TMJ replacement devices of either titanium alloy (Ti6Al4V) or cobalt-chromium-molybdenum (CoCrMo) alloy from 8 different manufacturers. The primary predictor variable was alloy type, according to its manufacturing process (wrought, cast, additively manufactured [AM]). The primary outcome variables were 1) microstructure (grain size, aspect ratio, and phase content) and 2) corrosion potential and current, polarization resistance, and capacitance. Differences between alloy groups were determined by t tests, Kruskal-Wallis, and Mann-Whitney tests. RESULTS: We demonstrated that the TMJR CoCrMo and Ti6Al4V alloy microstructures can vary broadly within American Society for Testing and Materials specifications, where the components made of Ti6Al4V had 3 types of microstructures (equiaxial, bimodal, and martensitic) out of 10 samples, and the components made of CoCrMo had 2 types of microstructure (equiaxial and dendritic) out of 16 samples. Some CoCrMo alloys exhibited preferential corrosion sites, while wrought Ti6Al4V alloys trended toward a superior corrosion behavior (corrosion rate: 2 × 10-9 A/cm2, polarization resistance: 5,000,000 kΩcm2, and capacitance: 10 µSsa/cm2) compared with AM alloys (39 × 10-9 A/cm2, 1676 kΩcm2, 36 µSsa/cm2, respectively), where 4 samples of each group were tested and repeated 5 times. Among four AM devices, two exhibited a significantly inferior corrosion behavior. CONCLUSIONS: Although AM is an exciting emerging new technology that allows manufacturing of custom-made TMJR, their corrosion behavior is still inferior in comparison to that of traditional wrought alloys. Preventing corrosion is crucial because it can cause surface defects that may lead to implant fracture.


Asunto(s)
Aleaciones , Prótesis Articulares , Aleaciones/química , Animales , Corrosión , Humanos , Ensayo de Materiales , Ratones , Propiedades de Superficie , Articulación Temporomandibular/cirugía
2.
Biotechnol Bioeng ; 118(12): 4829-4839, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34596239

RESUMEN

The generation of degradation products (DPs) like ions and organo-metallic particles from corroding metallic implants is an important healthcare concern. These DPs generate local and systemic toxicity. The impact on local toxicity is well documented, however, little is known about systemic toxicity. This is mainly due to the limited scope of the current microtiter plate-based (static) toxicity assay techniques. These methods do not mimic the systemic (dynamic) conditions. In this study, it is hypothesized that DPs incubated with cells in static conditions might provide improper systemic toxicity results, as there is no movement mimicking the blood circulation around cells. This study reports the development of a three-chambered prototype microfluidic system connected to the operational hip implant simulator to test the cellular response induced by the DPs. This setup is called a dynamic microfluidic bioreactor-hip simulator system. We hypothesize that a dynamic microfluidic system will provide a realistic toxicology response induced by DPs than a static cell culture plate. To prove the hypothesis, Neuro2a (N2a) cells were used as representative cells to study systemic neurotoxicity by the implant DPs. The microfluidic bioreactor system was validated by comparing the cell toxicity against the traditional static system and using COMSOL modeling for media flow with DPs. The hip implant simulator used in this study was a state-of-the-art sliding hip simulator developed in our lab. The results suggested that static toxicity was significantly more compared to dynamic microfluidic-based toxicity. The newly developed DMBH system tested for in situ systemic toxicity on N2a cells and demonstrated very minimum toxicity level (5.23%) compared to static systems (31.16%). Thus, the new DMBH system is an efficient tool for in situ implant metal systemic toxicity testing.


Asunto(s)
Reactores Biológicos , Metales/toxicidad , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Biológicos , Pruebas de Toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diseño de Equipo , Prótesis de Cadera , Ratones , Pruebas de Toxicidad/instrumentación , Pruebas de Toxicidad/métodos
3.
Cell Biol Toxicol ; 37(6): 833-847, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33415469

RESUMEN

The complexity of cobalt-chromium-molybdenum (CoCrMo) nanoparticles generated from the hip modular taper interfaces resulted in inconclusive outcomes on the level of toxicity in orthopedic patients. We used a hip simulator to generate physiologically relevant CoCrMo degradation products (DPs) to demonstrate the variation in the level of toxicity in neurons in comparison to processed degradation products (PDPs). The study outcomes indicate that DP induces a higher level of DNA damage in the form of double- and single-stranded DNA breaks and alkaline labile DNA adducts versus PDPs. The scientific advancements of this study are the following: (i) how DPs mimic more closely to the implant debris from hip implants in terms of bioactivity, (ii) how hip implant debris causes local and systemic issues, and (iii) methods to augment the biologic impact of implant debris. We discovered that DP is bioactive compared with PDP, and this should be considered in the toxicity evaluation related to implants. • The physicochemical characteristics of the CoCrMo is a major factor to consider for implant-related cytotoxicity or genotoxicity experimental design. • Elevated levels of intracellular ROS induced by the physiologically relevant wear particle are detrimental to the neuronal cells. • The DP can induce variation in DNA replication dynamics compared to PDP.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Nanopartículas , Corrosión , Replicación del ADN , Humanos , Neuronas , Vitalio
4.
Clin Orthop Relat Res ; 479(9): 2083-2096, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34019490

RESUMEN

BACKGROUND: Fretting and corrosion in metal-on-polyethylene total hip arthoplasty (THA) modular junctions can cause adverse tissue reactions that are responsible for 2% to 5% of revision surgeries. Damage within cobalt-chromium-molybdenum (CoCrMo) alloy femoral heads can progress chemically and mechanically, leading to damage modes such as column damage, imprinting, and uniform fretting damage. At present, it is unclear which of these damage modes are most detrimental and how they may be linked to implant alloy metallurgy. The alloy microstructure exhibits microstructural features such as grain boundaries, hard phases, and segregation bands, which may enable different damage modes, higher material loss, and the potential risk of adverse local tissue reactions. QUESTIONS/PURPOSES: In this study, we asked: (1) How prevalent is chemically dominated column damage compared with mechanically dominated damage modes in severely damaged metal-on-polyethylene THA femoral heads made from wrought CoCrMo alloy? (2) Is material loss greater in femoral heads that underwent column damage? (3) Do material loss and the presence of column damage depend on alloy microstructure as characterized by grain size, hard phase content, and/or banding? METHODS: Surgically retrieved wrought CoCrMo modular femoral heads removed between June 2004 and June 2019 were scored using a modified version of the Goldberg visually based scoring system. Of the total 1002 heads retrieved over this period, 19% (190 of 1002) were identified as severely damaged, exhibiting large areas of fretting scars, black debris, pits, and/or etch marks. Of these, 43% (81 of 190) were excluded for metal-on-metal articulations, alternate designs (such as bipolar, dual-mobility, hemiarthroplasty, metal adaptor sleeves), or previous sectioning of the implant for past studies. One sample was excluded retroactively as metallurgical analysis revealed that it was made of cast alloy, yielding a total of 108 for further analysis. Information on patient age (57 ± 11 years) and sex (56% [61 of 108] were males), reason for removal, implant time in situ (99 ± 78 months), implant manufacturer, head size, and the CoCrMo or titanium-based stem alloy pairing were collected. Damage modes and volumetric material loss within the head tapers were identified using an optical coordinate measuring machine. Samples were categorized by damage mode groups by column damage, imprinting, a combination of column damage and imprinting, or uniform fretting. Metallurgical samples were processed to identify microstructural characteristics of grain size, hard phase content, and banding. Nonparametric Mann-Whitney U and Kruskal-Wallis statistical tests were used to examine volumetric material loss compared with damage mode and microstructural features, and linear regression was performed to correlate patient- and manufacturer-specific factors with volumetric material loss. RESULTS: Chemically driven column damage was seen in 48% (52 of 108) of femoral heads, with 34% (37 of 108) exhibiting a combination of column damage and imprinting, 12% (13 of 108) of heads displaying column damage and uniform fretting, and 2% (2 of 108) exhibiting such widespread column damage that potentially underlying mechanical damage modes could not be verified. Implants with column damage showed greater material loss than those with mechanically driven damage alone, with median (range) values of 1.2 mm3 (0.2 to 11.7) versus 0.6 mm3 (0 to 20.7; p = 0.03). Median (range) volume loss across all femoral heads was 0.9 mm3 (0 to 20.7). Time in situ, contact area, patient age, sex, head size, manufacturer, and stem alloy type were not associated with volumetric material loss. Banding of the alloy microstructure, with a median (range) material loss of 1.1 mm3 (0 to 20.7), was associated with five times higher material loss compared with those with a homogeneous microstructure, which had a volume loss of 0.2 mm3 (0 to 4.1; p = 0.02). Hard phase content and grain size showed no correlation with material loss. CONCLUSION: Chemically dominated column damage was a clear indicator of greater volume loss in this study sample of 108 severely damaged heads. Volumetric material loss strongly depended on banding (microstructural segregations) within the alloy. Banding of the wrought CoCrMo microstructure should be avoided during the manufacturing process to reduce volumetric material loss and the release of corrosion products to the periprosthetic tissue. CLINICAL RELEVANCE: Approximately 30% of THAs rely on wrought CoCrMo femoral heads. Most femoral heads in this study exhibited a banded microstructure that was associated with larger material loss and the occurrence of chemically dominated column damage. This study suggests that elimination of banding from the alloy could substantially reduce the release of implant debris in vivo, which could potentially also reduce the risk of adverse local tissue reactions to implant debris.


Asunto(s)
Artroplastia de Reemplazo de Cadera/instrumentación , Aleaciones de Cromo/química , Cobalto/química , Prótesis de Cadera/efectos adversos , Molibdeno/química , Diseño de Prótesis/efectos adversos , Falla de Prótesis/efectos adversos , Anciano , Corrosión , Remoción de Dispositivos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Propiedades de Superficie
5.
Am J Dent ; 34(4): 191-194, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34370910

RESUMEN

PURPOSE: To evaluate the in vitro protective effect of a mint formulation containing (-)-epigallocatechin-3-gallate (EGCg-mint) on root dentin exposed to a highly erosive environment in the presence and absence of proteolytic challenge. METHODS: Root dentin specimens were subjected to an erosion-remineralization cycling model (6×/day; 5 days) that included 5-minute immersion in 1% citric acid and 60-minute immersion in remineralization solution (RS). At the remineralization half-time, the specimens were treated (n= 20) with EGCg-mint, RS (negative control) or sodium fluoride (1,000 ppm of NaF; positive control). Half of the specimens were kept overnight in RS (pH cycling) and the other half in RS with Clostridium histolyticum collagenase (pH-proteolytic cycling). Erosion depth was measured using optical profilometry and data analyzed by two-way ANOVA and Tukey tests (α= 0.05). RESULTS: Under pH-cycling, NaF resulted in statistically lower erosion depth compared to EGCg-mint (P= 0.020) and RS (P= 0.005). Under pH-proteolytic cycling, EGCg-mint and NaF significantly decreased the tissue loss (erosion depth, P< 0.001) compared to the RS. The EGCg-mint exhibited an anti-erosion property on root dentin under a proteolytic challenge. NaF presented an anti-erosion property regardless of the erosive cycling model. CLINICAL SIGNIFICANCE: The anti-erosive action of an over-the-counter mint, containing active ingredients, including epigallocatechin-3-gallate, is likely by the protective mechanisms of the dentin extracellular matrix.


Asunto(s)
Mentha , Erosión de los Dientes , Ácido Cítrico , Dentina , Fluoruros , Humanos , Fluoruro de Sodio/farmacología , Erosión de los Dientes/prevención & control
6.
J Prosthodont ; 28(2): e510-e518, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29508487

RESUMEN

PURPOSE: In the field of prosthodontics, patients often require complex and extensive restorative care. This can involve the use of dental restorations to restore teeth on both the maxillary and mandibular arch. Current literature has evaluated the wear properties of different dental ceramics against enamel, but studies regarding dental ceramics opposing one another are limited. The purpose of this study was to assess the wear potential and wear behavior of CAD/CAM zirconia (ZR) and lithium disilicate (LD) materials against a similar ceramic material, and how the surface finish of these dental ceramics might affect patterns of wear. MATERIALS AND METHODS: Using a sphere-on-plate tribometer system, different surface finishes (glazed-G and glazed then polished-GP) of ZR and LD were evaluated following wear simulation. Artificial saliva of physiologic pH was used as a lubricant during wear simulation at 37°C. The coefficient of friction (COF) was calculated during the wear simulation. After wear simulation was complete, volume loss, surface roughness, and surface characterization of the specimens were analyzed using white-light interferometry and scanning electron microscopy (SEM). Statistical significance between materials and surface finish was established with two-way ANOVA and Bonferroni post hoc test (α = 0.05). RESULTS: Based on the 2-way ANOVA, material (p = 0.002) significantly affected the COF. LD showed a higher COF (p = 0.002) than ZR. Material (p < 0.001) and surface finish (p = 0.004) significantly affected the surface roughness inside the scar. ZR had significantly lower surface roughness compared to LD (p < 0.001). For outside scar, surface finish (p < 0.001) significantly affected the surface roughness. Polished specimens showed significantly higher roughness compared to glazed specimens for both inside (p = 0.004) and outside scar (p < 0.001). For volume loss, material (p < 0.001) and the interaction between material and surface finish (p < 0.001) were statistically significant. LD had higher volume loss than ZR (p < 0.001). For both glazed and polished finished, LD-G and LD-GP had significantly higher volume loss than ZR-G (p = 0.028), and ZR-GP (p < 0.001), respectively. SEM analysis indicated particle build-up and a grooving mechanism of wear for the LD-GP specimens. This suggested a three-body wear phenomenon occurring for LD-GP specimens, which was not visible in SEM imaging for other specimen types. CONCLUSIONS: This study demonstrated the resistance to wear and low abrasiveness of ZR when compared to LD in a simulated masticatory environment. This can be best explained by the increased strength of ZR, and the introduction of three-body wear to LD specimens from the accumulation of embedded wear debris onto its surface. Wear data and comparison of SEM images following wear simulation confirmed this interpretation.


Asunto(s)
Cerámica/química , Diseño Asistido por Computadora , Fracaso de la Restauración Dental , Porcelana Dental , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Saliva Artificial/química , Propiedades de Superficie , Circonio
7.
Curr Osteoporos Rep ; 16(3): 236-245, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29679306

RESUMEN

PURPOSE OF REVIEW: Recently, significant progress has been made in the research related to regenerative medicine. At the same time, biomedical implants in orthopedics and dentistry are facing many challenges and posing clinical concerns. The purpose of this chapter is to provide an overview of the clinical applications of current regenerative strategies to the fields of dentistry and orthopedic surgery. The main research question in this review is: What are the major advancement strategies in regenerative medicine that can be used for implant research? RECENT FINDINGS: The implant surfaces can be modified through patient-specific stem cells and plasma coatings, which may provide methods to improve osseointegration and sustainability of the implant. Overall understanding from the review suggesting that the outcome from the studies could lead to identify optimum solutions for many concerns in biomedical implants and even in drug developments as a long-term solution to orthopedic and dental patients.


Asunto(s)
Interfase Hueso-Implante , Implantes Dentales , Prótesis Articulares , Oseointegración , Medicina Regenerativa , Células Madre , Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Prótesis de Cadera , Humanos , Prótesis de la Rodilla , Ortopedia , Osteoartritis/cirugía , Prótesis e Implantes , Espondilosis/cirugía , Reeemplazo Total de Disco
8.
J Oral Maxillofac Surg ; 76(10): 2074-2080, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29772190

RESUMEN

PURPOSE: The aim of this pilot study was to assay metal concentrations in the serum of patients who had undergone dental implant placement, orthognathic surgery using rigid metal fixation plates and screws, and total temporomandibular joint replacement (TMJ TJR). MATERIALS AND METHODS: Thirty patients were identified and included in this pilot study. Sixteen patients (9 men and 8 women), with an average age of 44 years (range, 19 to 79 yr), provided informed consent to participate and were divided into 3 study groups with 4 patients in each (group 1, orthognathic surgery; group 2, TMJ TJR; and group 3, dental implant placement). A control group consisted of volunteers without any implanted metallic devices. Blood samples for serum metal analysis were obtained and analyzed in accordance with the standardized collection and testing protocols used at the Trace Metal Analysis Laboratory of the Department of Orthopedic Surgery at the Rush University Medical Center (Chicago, IL). RESULTS: All control participants had levels below the normal reference range for all serum markers assessed. In the orthognathic group, 1 patient had an increased serum cobalt level. In the TMJ TJR group, 1 patient had an increased serum cobalt level and another patient had an increased serum chromium level. In the dental implant group, 1 patient had an increased serum titanium level and another had increased serum levels of titanium and chromium. CONCLUSIONS: This is the first study to report on the release of metal into the bloodstream in patients with different maxillofacial implanted metallic objects. The results raise questions regarding the types and magnitude of metal released from maxillofacial reconstruction devices and their potential long-term local and systemic effects. Future large-scale prospective studies involving serial measurements in homogeneous groups of patients could further elucidate the impact of these findings.


Asunto(s)
Artroplastia de Reemplazo/métodos , Cromo/sangre , Cobalto/sangre , Implantes Dentales , Cirugía Ortognática/métodos , Articulación Temporomandibular/cirugía , Titanio/sangre , Adulto , Anciano , Femenino , Humanos , Prótesis Articulares , Masculino , Persona de Mediana Edad , Proyectos Piloto
9.
J Prosthodont ; 27(9): 842-852, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29521461

RESUMEN

PURPOSE: Dental implants have been shown to have predictable success, but esthetic complications often arise. To reduce tissue shadowing from titanium, zirconia abutments may be used; however, the literature suggests that the use of zirconia leads to greater destruction of the implant interface that may result in biological complications such as titanium tattoos and heavy metal toxicity. Previous studies have examined the mechanical aspects of this implant/abutment relationship, but they have not accounted for the corrosive degradation that also takes place in the dynamic environment of the oral cavity. This study investigated the combined effect of both wear and corrosion on the materials at the implant and abutment interface. MATERIALS AND METHODS: Using a simulated oral tribocorrosive environment, titanium (Ti) and zirconia (Zr) abutment materials were slid against titanium and Roxolid implant alloys. The four couplings (Ti/Ti, Ti/Rox, Zr/Ti, Zr/Rox) were selected for the tribocorrosion tests (N = 3). The testing was conducted for 25K cycles, and the coefficient of friction (CoF) and voltage evolution were recorded simultaneously. Following the tribocorrosion assays, the wear volume loss was calculated, and surface characterization was performed. Statistical analysis was completed using a one-way ANOVA followed by post-hoc Bonferroni comparisons. RESULTS: Zr/Ti groups had the highest CoF (1.1647), and Ti/Ti had the lowest (0.5033). The Zr/Ti coupling generated significantly more mechanical damage than the Ti/Ti group (p = 0.021). From the corrosion aspect, the Ti/Ti groups had the highest voltage drop (0.802 V), indicating greater corrosion susceptibility. In comparison, the Zr/Roxolid group had the lowest voltage drop (0.628 V) and significantly less electrochemical degradation (p = 0.019). Overall, the Ti/Ti group had the largest wear volume loss (15.1 × 107 µm3 ), while the Zr/Ti group had the least volume loss (2.26 × 107 µm3 ). Both zirconia couplings had significantly less wear volume than the titanium couplings (p < 0.001). CONCLUSIONS: This study highlights the synergistic interaction between wear and corrosion, which occurs when masticatory forces combine with the salivary environment of the oral cavity. Overall, the zirconia groups outperformed the titanium groups. In fact, the titanium groups generated 5 to 6 times more wear to the implant alloys as compared with the zirconia counterparts. The best performing group was Zr/Ti, and the worst performing group was Ti/Ti.


Asunto(s)
Pilares Dentales/efectos adversos , Implantes Dentales/efectos adversos , Fracaso de la Restauración Dental , Titanio , Circonio , Corrosión , Diseño de Implante Dental-Pilar/efectos adversos , Fricción , Humanos , Microscopía Electrónica de Rastreo
10.
J Oral Maxillofac Surg ; 75(10): 2076-2084, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28449848

RESUMEN

PURPOSE: The purpose of this study was to determine whether failed alloplastic temporomandibular joint replacement (TMJR) devices can elicit the aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) reaction seen in some patients with metal-on-metal hip arthroplasties. MATERIALS AND METHODS: This study involved analysis of paraffin-embedded sections of peri-implant tissue from failed TMJ implant cases obtained from 3 independent sources. Hematoxylin and eosin staining, conventional and polarized light microscopy, back-scattered electron imaging, and energy-dispersive x-ray analysis were used. Immunohistochemical methods were used to identify T and B lymphocytes and macrophages. RESULTS: The total TMJR device specimens showed primary macrophage and lymphocytic responses similar to responses reported previously for failed total hip implants, including ALVAL. No chronic or acute inflammation was apparent in the failed hemiarthroplasty TMJR cases. CONCLUSION: In this limited preliminary study, the local tissue responses to the failed TMJR implants showed similar primary macrophage and lymphocyte responses to previously reported failed metal-on-metal and metal-on-polyethylene orthopedic total joint replacement devices. No such local inflammatory responses were seen with the failed TMJR hemiarthroplasty devices.


Asunto(s)
Prótesis Articulares/efectos adversos , Prótesis Mandibular/efectos adversos , Complicaciones Posoperatorias/etiología , Falla de Prótesis/efectos adversos , Articulación Temporomandibular/cirugía , Vasculitis/etiología , Adulto , Femenino , Humanos , Linfocitos , Masculino , Metales/efectos adversos , Persona de Mediana Edad , Polietileno/efectos adversos , Complicaciones Posoperatorias/inmunología , Vasculitis/inmunología
11.
Clin Orthop Relat Res ; 475(12): 3026-3043, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28884275

RESUMEN

BACKGROUND: Adverse local tissue reactions (ALTRs) triggered by corrosion products from modular taper junctions are a known cause of premature THA failure. CoCrMo devices are of particular concern because cobalt ions and chromium-orthophosphates were shown to be linked to ALTRs, even in metal-on-polyethylene THAs. The most common categories of CoCrMo alloy are cast and wrought alloy, which exhibit fundamental microstructural differences in terms of grain size and hard phases. The impact of implant alloy microstructure on the occurring modes of corrosion and subsequent metal ion release is not well understood. QUESTIONS/PURPOSES: The purpose of this study was to determine whether (1) the microstructure of cast CoCrMo alloy varies broadly between manufacturers and can dictate specific corrosion modes; and whether (2) the microstructure of wrought CoCrMo alloy is more consistent between manufacturers and has low implications on the alloy's corrosion behavior. METHODS: The alloy microstructure of four femoral-stem and three femoral-head designs from four manufacturers was metallographically and electrochemically characterized. Three stem designs were made from cast alloy; all three head designs and one stem design were made from wrought alloy. Alloy samples were sectioned from retrieved components and then polished and etched to visualize grain structure and hard phases such as carbides (eg, M23C6) or intermetallic phases (eg, σ phase). Potentiodynamic polarization (PDP) tests were conducted to determine the corrosion potential (Ecorr), corrosion current density (Icorr), and pitting potential (Epit) for each alloy. Four devices were tested within each group, and each measurement was repeated three times to ensure repeatable results. Differences in PDP metrics between manufacturers and between alloys with different hard phase contents were compared using one-way analysis of variance and independent-sample t-tests. Microstructural features such as twin boundaries and slip bands as well as corrosion damage features were viewed and qualitatively assessed in a scanning electron microscope. RESULTS: We found broad variability in implant alloy microstructure for both cast and wrought alloy between manufacturers, but also within the same implant design. In cast alloys, there was no difference in PDP metrics between manufacturers. However, coarse hard phases and clusters of hard phases (mainly intermetallic phases) were associated with severe phase boundary corrosion and pitting corrosion. Furthermore, cast alloys with hard phases had a lower Epit than those without (0.46 V, SD 0.042; 0.53 V, SD 0.03, respectively; p = 0.015). Wrought alloys exhibited either no hard phases or numerous carbides (M23C6). However, the corrosion behavior was mainly affected by lattice defects and banded structures indicative of segregations that appear to be introduced during bar stock manufacturing. Alloys with banding had a lower Ecorr (p = 0.008) and higher Icorr (p = 0.028) than alloys without banding (-0.76 V, SD 0.003; -0.73 V, SD 0.009; and 1.14 × 10-4 mA/cm2, SD 1.47 × 10-5; 5.2 × 10-5 mA/cm2, SD 2.57 × 10-5, respectively). Alloys with carbides had a slightly higher Ecorr (p = 0.046) than those without (-0.755 V, SD 0.005; -0.761 V, SD 0.004); however, alloys with carbides exhibited more severe corrosion damage as a result of phase boundary corrosion, hard phase detachment, and subsequent local crevice corrosion. CONCLUSIONS: The observed variability in CoCrMo alloy microstructure of both cast and wrought components in this study appears to be an important issue to address, perhaps through better standards, to minimize in vivo corrosion. The finding of the banded structures within wrought alloys is especially concerning because it unfavorably influences the corrosion behavior independent of the manufacturer. The findings suggest that a homogeneous alloy microstructure with a minimal hard phase fraction exhibits more favorable corrosion behavior within the in vivo environment of modular taper junctions, thus lowering metal ion release and subsequently the risk of ALTRs to corrosion products. Also, the question arises if hard phases fulfill a useful purpose in metal-on-polyethylene bearings, because they may come with a higher risk of phase boundary corrosion and pitting corrosion and the benefit they provide by adding strength is not needed (unlike in metal-on-metal bearings). CLINICAL RELEVANCE: Implant failure resulting from corrosion processes within modular junctions is a major concern in THA. Our results suggest that implant alloy microstructure is not sufficiently standardized and may also dictate specific corrosion modes and subsequent metal ion release.


Asunto(s)
Artroplastia de Reemplazo de Cadera/instrumentación , Aleaciones de Cromo/química , Articulación de la Cadera/cirugía , Prótesis de Cadera , Polietileno/química , Falla de Prótesis , Artroplastia de Reemplazo de Cadera/efectos adversos , Corrosión , Remoción de Dispositivos , Análisis de Falla de Equipo , Humanos , Diseño de Prótesis , Factores de Riesgo , Propiedades de Superficie
12.
Langmuir ; 31(13): 4008-17, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25780816

RESUMEN

The interfacial gelation of proteins at metallic surfaces was investigated with an electrochemical quartz crystal microbalance (QCM). When Cr electrodes were corroded in proteinaceous solutions, it was found that gels will form at the Cr surfaces if molybdate ions are also present in the solution. Gelation is reversible and can also be controlled with the electrochemical potential at the electrode. Further, a method was developed to characterize the viscoelastic properties of thin films in liquid media using the QCM as a high-frequency rheometer. By measuring the frequency and dissipation at multiple harmonics of the resonance frequency, the viscoelastic phase angle, density-modulus product, and areal mass of a film can be determined. The method was applied to characterize the protein films, demonstrating that they have a phase angle near 55° and a density-modulus product of ≈10(7) Pa·g/cm(3). Data imply that the gels are composed of a weakly cross-linked proteinaceous network with properties similar to albumin solutions with concentrations in the range of ≈40 wt %.


Asunto(s)
Proteínas/química , Elasticidad , Metales/química , Polímeros/química , Propiedades de Superficie , Viscosidad
13.
Corros Sci ; 100: 133-146, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26834277

RESUMEN

The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompability properties with better responses for corrosion and barrier properties, due to the presence of rutile crystalline structure. PEO may be a promising surface treatment option to improve the electrochemical behavior of dental implants mitigating treatment failures.

14.
J Oral Implantol ; 40(1): 3-10, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22103963

RESUMEN

Titanium is the most common material chosen for dental implants because it is highly corrosion resistant because it constantly reforms a protective passive film layer. The formation and composition of the passive film layer is dependent on the environmental conditions. If the stable oxide layer is damaged, the titanium surface underneath can corrode. The purpose of this study was to determine if basic corrosion of commercially pure titanium (CpTi) alloy in artificial saliva was affected by pH and to understand the corrosion kinetics/mechanisms of CpTi as a function of pH. In this study, titanium alloy discs were subjected to corrosion tests. Before the tests, all samples were cleaned and polished using standard metallographic preparation methods. Artificial saliva was used as the testing medium. The following pH values were tested: 3.0, 4.5, 6.0, 6.5, 7.5, and 9.0. Different pH values were achieved by adding lactic acid (acidic) or NaOH (basic) in appropriate amounts. Potentiodynamic curves indicated behavior change at each pH. In addition, the corrosion current density value determined from the potentiodynamic curve exhibited the poorest corrosion resistance for pH 7.5. The Nyquist plot (from the electrochemical impedance spectroscopy results) indicated that pH 7.5 had the poorest resistance. Scanning electron microscopy images indicated that pH levels of 6.5, 7.5, and 9.0 had considerable surface corrosion. The results showed that the media's pH significantly influenced the corrosion behavior of CpTi. The poor corrosion behavior at the neutral pHs invites some concerns and highlights the need for further study.


Asunto(s)
Aleaciones Dentales/química , Saliva Artificial/química , Titanio/química , Corrosión , Pulido Dental/métodos , Espectroscopía Dieléctrica , Electroquímica , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Hidróxido de Sodio/química , Propiedades de Superficie
15.
Heliyon ; 10(1): e23626, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192807

RESUMEN

Statement of problem: One of the main challenges facing dental implant success is peri-implantitis. Recent evidence indicates that titanium (Ti) corrosion products and undetected-residual cement are potential risk factors for peri-implantitis. The literature on the impact of various types of dental cement on Ti corrosion is very limited. Purpose: This study aimed to determine the influence of dental cement on Ti corrosion as a function of cement amount and type. Materials and methods: Thirty commercially pure Ti grade 4 discs (19 × 7mm) were polished to mirror-shine (Ra ≈ 40 nm). Samples were divided into 10 groups (n = 3) as a cement type and amount function. The groups were no-cement as control, TempBond NE (TB3mm, TB5mm, and TB8mm), FujiCEM-II (FC3mm, FC5mm, and FC8mm), and Panavia-F-2.0 (PC3mm, PC5mm, and PC8mm). Tafel's method estimated corrosion rate (icorr) and corresponding potential (Ecorr) from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data was utilized to obtain Nyquist and Bode plots. An equivalent electrical circuit estimated polarization resistance (Rp) and double-layer capacitance (Cdl). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was conducted to analyze the electrolyte solution after corrosion. pH measurements of the electrolyte were recorded before and after corrosion tests. Finally, the corroded surface was characterized by a 3D white-light microscope and scanning electron microscope. Statistical analysis was conducted using either one-way ANOVA followed by Tukey's Post Hoc test or Kruskal-Wallis followed by Dunn's test based on data distribution. Results: Based on cement amount, FC and PC significantly increased icorr in higher amounts (FC8mm-icorr = 8.22 × 10-8A/cm2, PC8mm-icorr = 5.61 × 10-8A/cm2) compared to control (3.35 × 10-8A/cm2). In contrast, TB3mm decreased icorr significantly compared to the control. As a function of cement type, FC increased icorr the most. EIS data agrees with these observations. Finally, corroded surfaces had higher surface roughness (Ra) compared to non-corroded surfaces. Conclusion: The study indicated that cement types FC and PC led to increased Ti-corrosion as a function of a higher amount. Hence, the implant stability could be impacted by the selection, excessive cement, and a potentially increased risk of peri-implantitis.

16.
Med Biol Eng Comput ; 62(8): 2409-2434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38609577

RESUMEN

ASTRACT: One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.


Asunto(s)
Técnicas Biosensibles , Espectroscopía Dieléctrica , Peróxido de Hidrógeno , Ácido Láctico , Lipopolisacáridos , Estrés Oxidativo , Periodontitis , Saliva , Humanos , Saliva/química , Saliva/metabolismo , Periodontitis/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Técnicas Biosensibles/métodos , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Espectroscopía Dieléctrica/métodos , Biomarcadores/análisis , Biomarcadores/metabolismo , Aprendizaje Automático
17.
BME Front ; 5: 0064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39297176

RESUMEN

Objective: We conducted a comprehensive physicochemical analysis of one-dimensional ZnO nanowires (1DZnO), incorporating anti-CYFRA 21-1 immobilization to promote fast optical biomarker detection up to 10 ng ml-1. Impact Statement: This study highlights the effectiveness of proof-of-concept 1DZnO nanoplatforms for rapid cancer biomarker detection by examining the nanoscale integration of 1DZnO with these bioreceptors to deliver reliable photoluminescent output signals. Introduction: The urgent need for swift and accurate prognoses in healthcare settings drives the rise of sensitive biosensing nanoplatforms for cancer detection, which has benefited from biomarker identification. CYFRA 21-1 is a reliable target for the early prediction of cancer formation that can be perceptible in blood, saliva, and serum. However, 1DZnO nanostructures have been barely applied for CYFRA 21-1 detection. Methods: We assessed the nanoscale interaction between 1DZnO and anti-CYFRA 21-1 antibodies to develop rapid CYFRA 21-1 detection in two distinct matrices: PhosphateBuffered Saline (PBS) buffer and artificial saliva. The chemical modifications were tracked utilizing Fourier transform infrared spectroscopy, while transmission electron microscopy and energy dispersive spectroscopy confirmed antigen-antibody interplay over nanostructures. Results: Our results show high antibody immobilization efficiencies, affirming the effectiveness of 1DZnO nanoplatforms for rapid CYFRA 21-1 testing within a 5-min detection window in both PBS and artificial saliva. Photoluminescence measurements also revealed distinct optical responses across biomarker concentrations ranging from 10 to 1,000 ng ml-1. Conclusion: Discernible PL signal responses obtained after 5 min affirm the potential of 1DZnO nanoplatforms for further advancement in optical biomarker detection for application in early cancer prognosis.

18.
Int J Biol Macromol ; 257(Pt 2): 128773, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096932

RESUMEN

Periodontitis is a chronic inflammation of the periodontium caused by a persistent bacterial infection, resulting in destruction of the supporting structures of teeth. Analysis of microbial composition in saliva can inform periodontal status. Actinobacillus actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Streptococcus mutans (Sm) are among reported periodontal pathogens, and were used as model systems in this study. Our atomic force microscopic (AFM) study revealed that these pathogens are biological nanorods with dimensions of 0.6-1.1 µm in length and 500-700 nm in width. Current bacterial detection methods often involve complex preparation steps and require labeled reporting motifs. Employing surface-enhanced Raman spectroscopy (SERS), we revealed cell-type specific Raman signatures of these pathogens for label-free detection. It overcame the complexity associated with spectral overlaps among different bacterial species, relying on high signal-to-noise ratio (SNR) spectra carefully collected from pure species samples. To enable simple, rapid, and multiplexed detection, we harnessed advanced machine learning techniques to establish predictive models based on a large set of raw spectra of each bacterial species and their mixtures. Using these models, given a raw spectrum collected from a bacterial suspension, simultaneous identification of all three species in the test sample was achieved at 95.6 % accuracy. This sensing modality can be applied to multiplex detection of a broader range and a larger set of periodontal pathogens, paving the way for hassle-free detection of oral bacteria in saliva with little to no sample preparation.


Asunto(s)
Periodontitis , Espectrometría Raman , Humanos , Periodontitis/microbiología , Porphyromonas gingivalis , Periodoncio , Saliva
19.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917828

RESUMEN

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Asunto(s)
Regeneración Ósea , Proliferación Celular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Animales , Línea Celular Tumoral , Transducción de Señal , Supervivencia Celular , Ingeniería de Tejidos/métodos , Quitosano/química , Fosfatasa Alcalina/metabolismo , Oseointegración , Polímeros/química , Porosidad
20.
Anal Chem ; 85(15): 7159-66, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23848566

RESUMEN

Scanning electrochemical microscopy was used to probe the topography and electrochemical activity of CoCrMo alloys mechanically polished in the presence of bovine calf serum (BCS) in a hip simulator. These substrates are made of the same alloy used in metal-on-metal bearings for artificial hip joints. The BCS serves as an in vitro substitute for the synovial fluid which forms a lubricant in the actual orthopedic device. Chemical and mechanical processes result in the formation of a tribolayer which passivates the alloy surface. Our studies of the heterogeneous electron transfer between ferrocenemethanol and the alloy indicate that the tribolayer formed on both high- and low-carbon substrates is highly heterogeneous with regions of high electrochemical activity. Whereas pits in the samples polished in the absence of BCS show the regions of highest electrochemical activity, the tribolayer-coated samples have electrochemical hot spots in topographically smooth regions of the surface. The tribolayer provides some attenuation of the electrochemical activity of the alloy but does not prevent the possibility of corrosion from occurring.


Asunto(s)
Aleaciones/química , Cromo/química , Cobalto/química , Microscopía Electroquímica de Rastreo , Molibdeno/química , Animales , Bovinos , Corrosión , Electroquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA