Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int Microbiol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38777925

RESUMEN

INTRODUCTION: The emergence of multidrug-resistant bacteria and biofilms requires discovering new antimicrobial agents from unexplored environments. OBJECTIVES: This study aims to isolate and characterize a new actinobacterial strain from the Hoggar Mountains in southern Algeria and evaluate its ability to produce bioactive molecules with potential antibacterial and antibiofilm activities. METHODS: A novel halotolerant actinobacterial strain, designated HG-17, was isolated from the Hoggar Mountains, and identified based on phenotypic characterizations, 16S rDNA sequence analysis, and phylogenetic analysis. The antibacterial and antibiofilm activities of the strain were assessed, and the presence of biosynthetic genes (PKS-I and NRPS) was confirmed. Two active compounds, HG-7 and HG-9, were extracted butanol solvent, purified by HPLC, and their chemical structures were elucidated using ESI mass spectrometry and NMR spectroscopy. RESULTS: The strain HG-17 was identified as Streptomyces purpureus NBRC with 98.8% similarity. It exhibited strong activity against multidrug-resistant and biofilm-forming bacteria. The two purified active compounds, HG-7 and HG-9, were identified as cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine), respectively. The minimum inhibitory concentrations (MICs) of HG-7 and HG-9 ranged from 3 to 15 µg/mL, comparable to the MICs of tetracycline (8 to 15 µg/mL). Their minimum biofilm inhibitory concentration (MBIC 50%) showed good inhibition from 48.0 to 52.0% at concentrations of 1 to 7 µg/mL against the tested bacteria. CONCLUSION: This is the first report of cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine) antibiotics from S. purpureus and their anti-multi-drug-resistant and biofilm-forming bacteria. These results indicate that both antibiotics could be used as effective therapeutics to control infections associated with multidrug-resistant bacteria.

2.
Curr Microbiol ; 79(10): 298, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002540

RESUMEN

Multi-resistant bacterial pathogens are a major public health problem for treating nosocomial infections owing to their high resistance to antibiotics. The objective of this research was to characterize the bioactive molecules secreted by a novel moderately halophilic actinobacterium strain, designated GSB-11, exhibiting a strong antagonistic activity against several multidrug-resistant pathogenic bacteria. This potential strain was identified by phenotypic, genotypic (16S rRNA), and phylogenetic analyses. GSB-11 was related to "Streptomyces acrimycini" NBRC 12736 T with 99.59% similarity. Molecular screening by PCR assay demonstrated that the strain possesses two biosynthetic genes coding for NRPS and PKS-II. Two active compounds GSB11-6 and GSB11-7 were extracted from the cell-free culture supernatant of Bennett medium and purified using reversed-phase HPLC. According to spectrometric (mass spectrum) and spectroscopic (1H NMR, 13C NMR, 1H-1H COSY, and 1H-13C HMBC) spectra analyses, the compounds GSB11-6 and GSB11-7 were identified to be maculosin and N-acetyltyramine, respectively. Their minimum inhibitory concentrations (MIC) revealed interesting values against certain multidrug-resistant pathogenic bacteria. They were between 5 and 15 mg/mL for GSB11-6, 10 and 30 mg/mL for GSB11-7. To our best knowledge, this is the first study of these active substances isolated from "Streptomyces acrimycini" showing an interesting antibacterial activity. Therefore, these essential compounds could be candidates for future research against multidrug-resistant bacteria.


Asunto(s)
Microbiología del Suelo , Streptomyces , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos , Filogenia , Piperazinas , ARN Ribosómico 16S/genética , Tiramina/análogos & derivados
3.
Arch Microbiol ; 202(9): 2509-2516, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32642829

RESUMEN

Saccharothrix algeriensis NRRL B-24137 is an actinobacterium isolated from Algerian Saharan soil. This strain has the ability to produce several dithiolopyrrolone antibiotic derivatives depending on the precursors added to the culture medium. This group of antibiotics is known for their potent antimicrobial and anticancer activities. Holomycin is a member of the dithiolopyrrolone group of antibiotics, and has already been isolated from several species of actinobacteria belonging to the genus Streptomyces and also from some Gram-negative bacteria. In this study, holomycin was produced for the first time in the culture broth of a non-Streptomyces actinobacteria. This antibiotic was induced by adding 5 mM of L-cystine as precursor to the semi-synthetic fermentation broth of Sa. algeriensis NRRL B-24137 and then fully identified after HPLC purification. The minimum inhibitory concentrations (MIC) of holomycin were determined against several pathogenic microorganisms, including Escherichia coli ATCC 10536 Klebsiella pneumoniae CIP 82.91, Listeria monocytogenes CIP 82110, Staphylococcus aureus CIP 7625, Aspergillus carbonarius M333, Fusarium culmorum FC1, Candida albicans IPA 200. This antibiotic showed a broad-spectrum antimicrobial activity, inhibiting a variety of Gram-positive and Gram-negative bacteria, and micro-fungi.


Asunto(s)
Actinobacteria/metabolismo , Cistina/metabolismo , Lactamas/metabolismo , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Medios de Cultivo/química , Fermentación , Hongos/efectos de los fármacos , Lactamas/farmacología , Pruebas de Sensibilidad Microbiana
4.
Curr Microbiol ; 77(2): 210-219, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31786637

RESUMEN

Black aspergilli produce many bioactive compounds: enzymes, organic acids, and secondary metabolites. One such fungus, Aspergillus tubingensis G131, isolated from French Mediterranean vineyards, produces secondary metabolites with antioxidant properties that can be extracted with ethanol. In this study, crude antioxidant extracts obtained from A. tubingensis G131 cultures were encapsulated with two types of chitosan matrix. Spray-drying was used to obtain dried particles from a dispersion of fungal crude extracts in a solution of the coating agent chitosan. This process appeared to be an efficient method for obtaining a dry extract with antioxidant activity. Three types of fungal extracts, with different antioxidant capacities, were produced: two different concentrations of crude extract and a semi-purified extract. In this study, the chitosan matrices for encapsulation were chosen on the basis of their antimicrobial activities for wine applications. Classical low molecular weight chitosan was compared with NoBrett Inside® which is already used to prevent the development of Brettanomyces spp. in wine. The objective of this study was to confirm that both antioxidant (fungal extract) and antimicrobial (chitosan) properties were preserved after spray-drying. The combination of these two properties and the powder formulation of this entirely natural product would make it a good alternative to chemicals, such as sulfites, in the food and wine industries.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Aspergillus/química , Quitosano/química , Vino/análisis , Desecación/métodos , Hongos/química , Metabolismo Secundario
5.
Saudi Pharm J ; 27(7): 907-913, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31997896

RESUMEN

In our previous studies, the production of four bioactive molecules by Streptomyces sp. PAL114 in complex ISP2 broth medium has been described. Three of these molecules belong to the angucycline family. In this study, two novel antibiotics belonging to the same family were produced by strain PAL114 on M2 synthetic medium containing L-tryptophan as precursor. These antibiotics, named mzabimycins A and B, were intracellular and produced only in the presence of L-tryptophan. After four days of culturing PAL114 in the M2 medium, the bioactive compounds were extracted from mycelium with methanol and then analyzed by HPLC on reverse phase C18 column. Two active purplish blue fractions were purified. The chemical structures of these molecules were determined on the basis of spectroscopic and spectrometric analyses (1H and 13C NMR, and mass spectra). They were identified to be novel angucycline derivative antibiotics. The pure molecules showed activity against some pathogenic Gram-positive bacteria which have multiple antibiotic resistance, such as Staphylococcus aureus MRSA 639c and Listeria monocytogenes ATCC 13932.

6.
Saudi Pharm J ; 27(1): 56-65, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30662307

RESUMEN

The actinobacterium strain ABH26 closely related to Saccharothrix xinjiangensis, isolated from an Algerian Saharan soil sample, exhibited highly antagonist activity against Gram-positive bacteria, yeasts and filamentous fungi. Its ability to produce antimicrobial compounds was investigated using several solid culture media. The highest antimicrobial activity was obtained on Bennett medium. The antibiotics secreted by strain ABH26 on Bennett medium were extracted by methanol and purified by reverse-phase HPLC using a C18 column. The chemical structures of the compounds were determined after spectroscopic (1H NMR, 13C NMR, 1H-1H COSY and 1H-13C HMBC spectra), and spectrometric (mass spectrum) analyses. Two new cyanogriside antibiotics named cyanogriside I (1) and cyanogriside J (2), were characterized along with three known caerulomycins, caerulomycin A (3), caerulomycin F (4) and caerulomycinonitrile (5). This is the first report of cyanogrisides and caerulomycins production by a member of the Saccharothrix genus. The minimum inhibitory concentrations (MIC) of these antibiotics were determined against pathogenic microorganisms.

7.
BMC Genomics ; 19(1): 200, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29703136

RESUMEN

BACKGROUND: Black Aspergilli represent one of the most important fungal resources of primary and secondary metabolites for biotechnological industry. Having several black Aspergilli sequenced genomes should allow targeting the production of certain metabolites with bioactive properties. RESULTS: In this study, we report the draft genome of a black Aspergilli, A. tubingensis G131, isolated from a French Mediterranean vineyard. This 35 Mb genome includes 10,994 predicted genes. A genomic-based discovery identifies 80 secondary metabolites biosynthetic gene clusters. Genomic sequences of these clusters were blasted on 3 chosen black Aspergilli genomes: A. tubingensis CBS 134.48, A. niger CBS 513.88 and A. kawachii IFO 4308. This comparison highlights different levels of clusters conservation between the four strains. It also allows identifying seven unique clusters in A. tubingensis G131. Moreover, the putative secondary metabolites clusters for asperazine and naphtho-gamma-pyrones production were proposed based on this genomic analysis. Key biosynthetic genes required for the production of 2 mycotoxins, ochratoxin A and fumonisin, are absent from this draft genome. Even if intergenic sequences of these mycotoxins biosynthetic pathways are present, this could not lead to the production of those mycotoxins by A. tubingensis G131. CONCLUSIONS: Functional and bioinformatics analyses of A. tubingensis G131 genome highlight its potential for metabolites production in particular for TAN-1612, asperazine and naphtho-gamma-pyrones presenting antioxidant, anticancer or antibiotic properties.


Asunto(s)
Aspergillus/genética , Metabolismo Secundario , Secuenciación Completa del Genoma/métodos , Aspergillus/clasificación , Aspergillus/aislamiento & purificación , Granjas , Proteínas Fúngicas/genética , Tamaño del Genoma , Indoles/metabolismo , Anotación de Secuencia Molecular , Filogenia , Piperazinas/metabolismo
8.
Microb Pathog ; 119: 19-27, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29626659

RESUMEN

A new aerobic bacterium TN71 was isolated from Tunisian Saharan soil and has been selected for its antimicrobial activity against phytopathogenic bacteria. Based on cellular morphology, physiological characterization and phylogenetic analysis, this isolate has been assigned as Streptomyces sp. TN71 strain. In an attempt to increase its anti-Agrobacterium tumefaciens activity, GYM + S (glucose, yeast extract, malt extract and starch) medium was selected out of five different production media and the medium composition was optimized. Plackett-Burman design (PBD) was used to select starch, malt extract and glucose as parameters having significant effects on antibacterial activity and a Box-Behnken design was applied for further optimization. The analysis revealed that the optimum concentrations for anti-A. tumefaciens activity of the tested variables were 19.49 g/L for starch, 5.06 g/L for malt extract and 2.07 g/L for glucose. Several Artificial Neural Networks (ANN): the Multilayer perceptron (MLP) and the Radial basis function (RBF) were also constructed to predict anti-A. tumefaciens activity. The comparison between experimental with predicted outputs from ANN and Response Surface Methodology (RSM) were studied. ANN model presents an improvement of 12.36% in terms of determination coefficients of anti A. tumefaciens activity. To our knowledge, this is the first work reporting the statistical versus artificial intelligence based modeling for optimization of bioactive molecules against phytopathogens.


Asunto(s)
Agrobacterium tumefaciens/efectos de los fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Streptomyces/metabolismo , Antibacterianos/aislamiento & purificación , Medios de Cultivo/química , ADN Bacteriano , Fermentación , Pruebas de Sensibilidad Microbiana , Redes Neurales de la Computación , Filogenia , ARN Ribosómico 16S/genética , Metabolismo Secundario , Suelo , Microbiología del Suelo , Especificidad de la Especie , Streptomyces/clasificación , Streptomyces/genética , Streptomyces/aislamiento & purificación , Túnez
9.
FEMS Yeast Res ; 18(7)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30052989

RESUMEN

An oenological strain of Saccharomyces cerevisiae was previously shown to produce a 5-10 kDa peptidic fraction responsible for the inhibition of malolactic fermentation (MLF). In the present study, we aim to further purify the anti-MLF peptides of this fraction. The yeast fermented synthetic grape juice medium was fractionated by ammonium sulfate precipitation combined with ultrafiltration. The 5-10 kDa fraction recovered at a saturation degree of 60%-80% was the only fraction that inhibited both the bacterial growth and the malate consumption in vivo. It also inhibited the malolactic enzyme activity in vitro at a pH range between 3.5 and 6.7. Therefore, it was purified by both anion and cation exchange chromatography. The eluates that inhibited the malolactic enzyme activity in vitro were migrated on Tricine SDS-PAGE and the protein bands were excised and sequenced by LC-MS/MS. The sequencing revealed nine peptides originating from eight proteins of S. cerevisiae. Two GAPDH cationic fragments of 0.9 and 1.373 kDa having a pI of 10.5 and 11 respectively, Wtm2p and Utr2p anionic fragments of 2.42 kDa with a pI of 3.5 and 4 respectively were thought to contribute the most to the MLF inhibition.


Asunto(s)
Fermentación , Malato Deshidrogenasa/antagonistas & inhibidores , Malatos/metabolismo , Péptidos/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Fermentación/efectos de los fármacos , Proteínas Fúngicas/química , Concentración de Iones de Hidrógeno , Ácido Láctico/biosíntesis , Peso Molecular , Oenococcus/efectos de los fármacos , Oenococcus/crecimiento & desarrollo , Oenococcus/metabolismo , Péptidos/farmacología , Vitis/metabolismo
10.
World J Microbiol Biotechnol ; 33(6): 105, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28466299

RESUMEN

A novel actinobacterium strain, named AT37, showed a strong activity against some multidrug-resistant Staphylococcus aureus, including methicillin-resistant S. aureus MRSA ATCC 43300, other clinical isolates of MRSA and vancomycin resistant S. aureus VRSA S1. The strain AT37 was isolated from a Saharan soil by a dilution agar plating method using chitin-vitamin agar medium supplemented with rifampicin. The morphological and chemical studies indicated that this strain belonged to the genus Streptomyces. Its 16S rRNA gene sequence was determined and a database search indicated that it was closely associated with the type strain of Streptomyces novaecaesareae NBRC 13368T with 99.6% of similarity. However, the comparison of the morphological and the physiological characteristics of the strain with those of the nearest species showed significant differences. The strain AT37 secreted the antibiotic optimally during mid-stationary phase of growth. One active compound (AT37-1) was extracted from the culture broth with dichloromethane, separated on silica gel plates and purified by HPLC. Based on spectroscopic analysis of UV-Visible, infrared, and 1H and 13C NMR spectra and spectrometric analysis, the chemical structure of the compound AT37-1 was identified as 5-[(5E,7E,11E)-2,10-dihydroxy-9,11-dimethyl-5,7,11-tridecatrien-1-yl]-2-hydroxy-2-(1-hydroxyethyl)-4-methyl-3(2H)-furanone. Minimum inhibitory concentrations and minimum biofilm inhibitory concentration (MBIC50) of this compound showed significant activity against multidrug-resistant S. aureus with 15-30 and 10-15 µg/mL, respectively.


Asunto(s)
Furanos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Análisis de Secuencia de ADN/métodos , Streptomyces/clasificación , África del Norte , Técnicas de Tipificación Bacteriana , Pruebas de Sensibilidad Microbiana , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Suelo , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo , Resistencia a la Vancomicina/efectos de los fármacos
11.
Int J Syst Evol Microbiol ; 66(7): 2724-2729, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27117880

RESUMEN

A novel actinobacterial strain, designated ACD12T, was isolated from a Saharan soil sample collected from Adrar province, southern Algeria. A polyphasic study was carried out to establish the taxonomic position of this strain. Strain ACD12T was observed to form extensively branched substrate mycelia. Aerial mycelium was absent or was weakly produced on all media tested, while spore chains were short with a hooked and irregular spiral form (2-3 turns). The dominant diaminopimelic acid isomer in the cell wall was meso-diaminopimelic acid. Glucose, ribose, galactose, mannose and madurose occured in whole-cell hydrolysates. The major phospholipid was diphosphatidylglycerol and phosphatidylinositol. The predominant menaquinone was MK-9(H6). The fatty acid profile was characterized by the presence of C16 : 0, C17 : 0, C15 : 0, C18 : 0, C18 : 1 cis9 and iso-C16 : 0. Results of 16S rRNA gene sequence comparisons revealed that strain ACD12T shared the highest degree of 16S rRNA gene sequence similarity with Actinomadura sputi DSM 45233T (98.3 %) and Actinomadura hallensis DSM 45043T (97.8 %). All tree-making algorithms used also supported strain ACD12T forming a distinct clade with its most closely related species. In addition, DNA-DNA hybridization indicated only 39.8 % relatedness with A. sputi DSM 45233T and 18.7 % relatedness with A. hallensis DSM 45043T. The combined phenotypic and genotypic data show that the novel isolate represents a novel species of the genus Actinomadura, for which the name Actinomadura adrarensis sp. nov., is proposed, with the type strain ACD12T (=DSM 46745T =CECT 8842T).


Asunto(s)
Actinomycetales/clasificación , Filogenia , Microbiología del Suelo , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , África del Norte , Argelia , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Antonie Van Leeuwenhoek ; 109(1): 159-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26542839

RESUMEN

During the course of a screening programme for new taxa of actinobacteria, a strain designated ACD1(T), was isolated from a Saharan soil in the Hoggar region (Algeria). The taxonomic position of this strain was determined using a polyphasic taxonomic approach. The strain was observed to form extensively branched, non-fragmenting substrate mycelium, and aerial mycelium with straight to flexuous, hooked and irregular spirals (1-2 turns) forming short chains of spores. The diamino acid present in the cell wall is meso-diaminopimelic acid. Galactose, glucose, madurose, mannose and ribose occur in whole-cell hydrolysates. The diagnostic phospholipids detected were diphosphatidylglycerol and phosphatidylinositol. The major menaquinones were identified as MK-9 (H4) and MK-9 (H2). The major fatty acids were found to be C16:0, C18:1 cis9, iso-C16:0 and 10-methyl C18:0. Phylogenetic analysis based on the 16S rRNA gene showed that the strain belongs to the genus Actinomadura, and is closely related to Actinomadura sediminis DSM 45500(T) (98.5 % similarity) and Actinomadura cremea subsp. cremea DSM 43676(T) (98.3 % similarity). However, DNA-DNA hybridization revealed only 48.0 % relatedness with A. sediminis DSM 45500(T) and 33.2 % relatedness with A. cremea subsp. cremea DSM 43676(T). The combined phenotypic and genotypic data showed that the strain represents a novel species of the genus Actinomadura, for which the name Actinomadura algeriensis sp. nov. is proposed, with the type strain ACD1(T) (= DSM 46744(T) = CECT 8841(T)).


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/aislamiento & purificación , Microbiología del Suelo , Actinomycetales/genética , Actinomycetales/metabolismo , Argelia , Pared Celular/metabolismo , Análisis por Conglomerados , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácido Diaminopimélico/metabolismo , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Micelio/citología , Hibridación de Ácido Nucleico , Fosfolípidos/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Esporas Bacterianas/citología , Vitamina K 2/metabolismo
13.
Antonie Van Leeuwenhoek ; 109(2): 311-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678783

RESUMEN

A novel thermophilic filamentous bacterium, designated strain T36(T), was isolated from soil sediment sample from a hot spring source collected in Khenchela province, Algeria. Strain T36(T) was identified as a member of the genus Thermoactinomyces by a polyphasic approach. Strain T36(T) was observed to form white aerial mycelium and non-coloured to pale yellow substrate mycelium, both producing endospores, sessile or borne by short sporophores. The optimum growth temperature and pH were found to be 37-55 °C and 7.0-9.0, respectively and the optimum NaCl concentration for growth was found to be 0-7 % (w/v). The diagnostic diamino acid in the cell wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinone of strain T36(T) was identified as MK-7 (H0). The major fatty acids were found to be iso-C15:0 and iso-C17:0. The phospholipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphoglycolipid. The chemotaxonomic properties of strain T36(T) are consistent with those shared by members of the genus Thermoactinomyces. 16S rRNA gene sequence analysis indicated that the sequence similarities between strain T36(T) and Thermoactinomyces species with validly published names were less than 98 %. Based on the combined genotypic and phenotypic evidence, it is proposed that strain T36(T) should be classified as representative of a novel species, for which the name Thermoactinomyces khenchelensis sp. nov. is proposed. The type strain is T36(T) (=DSM 45951(T) = CECT 8579(T)).


Asunto(s)
Sedimentos Geológicos/microbiología , Manantiales de Aguas Termales/microbiología , Thermoactinomyces/aislamiento & purificación , Argelia , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Suelo , Thermoactinomyces/clasificación , Thermoactinomyces/genética , Thermoactinomyces/metabolismo
14.
Appl Microbiol Biotechnol ; 99(3): 1081-96, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25520172

RESUMEN

Naphtho-γ-pyrones (NGPs) are secondary metabolites mainly produced by filamentous fungi (Fusarium sp., Aspergillus sp.) that should be considered by industrials. Indeed, these natural biomolecules show various biological activities: anti-oxidant, anti-microbial, anti-cancer, anti-HIV, anti-hyperuricuric, anti-tubercular, or mammalian triacylglycerol synthesis inhibition which could be useful for pharmaceutical, cosmetic, and/or food industries. In this review, we draw an overview on the interest in studying fungal NGPs by presenting their biological activities and their potential values for industrials, their biochemical properties, and what is currently known on their biosynthetic pathway. Finally, we will present what remains to be discovered about NGPs.


Asunto(s)
Aspergillus/metabolismo , Hongos/metabolismo , Fusarium/metabolismo , Naftalenos/metabolismo , Pironas/metabolismo , Metabolismo Secundario , Biotecnología/métodos , Tecnología Farmacéutica/métodos
15.
Antonie Van Leeuwenhoek ; 107(2): 313-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25380720

RESUMEN

An alkalitolerant actinomycete strain, designated B32(T), was isolated from a Saharan soil sample collected from Adrar province (South of Algeria), and then investigated using a polyphasic taxonomic approach. The strain was observed to produce short chains of spores on the dichotomous branched aerial mycelium and formed a fragmented substrate mycelium. The optimum NaCl concentration for growth was found to be 0-5 % (w/v) and the optimum growth temperature and pH were found to be 25-35 °C and 7.0-10.0 °C, respectively. The diagnostic diamino acid in the cell-wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinones of strain B32(T) were identified as MK-10 (H4) and MK-11 (H4). The major fatty acids were found to be iso-C16:0 and anteiso-C15:0. The diagnostic phospholipids detected were phosphatidylcholine, phosphatidylmethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The chemotaxonomic properties of strain B32(T) are consistent with those shared by members of the genus Nocardiopsis. 16S rRNA gene sequence analysis indicated that strain B32(T) is most closely related to Nocardiopsis alba DSM 43377(T) (98.7 %), Nocardiopsis lucentensis DSM 44048(T) (98.6 %), Nocardiopsis aegyptia DSM 44442(T) (98.6 %), Nocardiopsis sinuspersici HM6(T) (98.6 %) and Nocardiopsis arvandica HM7(T) (98.5 %). However, the DNA-DNA relatedness values between strain B32(T) and the closely related type strains were 17.9, 14.6, 31.1, 27.1 and 14.1 %, respectively. Based on the combined genotypic and phenotypic evidence, it is proposed that strain B32(T) should be classified as representative of a novel species, for which the name Nocardiopsis algeriensis sp. nov. is proposed. The type strain is B32(T) (=DSM 45462(T) = CECT 8712(T)).


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Microbiología del Suelo , Actinobacteria/genética , Actinobacteria/fisiología , África del Norte , Técnicas de Tipificación Bacteriana , Pared Celular/química , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácido Diaminopimélico/análisis , Ácidos Grasos/análisis , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Peptidoglicano/análisis , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Esporas Bacterianas/citología , Temperatura , Vitamina K 2/análisis
16.
J Basic Microbiol ; 55(2): 221-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25284744

RESUMEN

An actinomycete strain named IA1, which produced an antimicrobial compound, was isolated from a Saharan soil in In Amenas, Algeria. The study of the 16S rDNA sequence of this strain permitted to relate it to Streptomyces mutabilis NBRC 12800(T) (99.93% of similarity). Strain IA1 exhibited strong activity against a wide range of plant pathogenic fungi. One bioactive compound produced in large amounts (46.7 mg L(-1) day(-1) ), named YA, was isolated and purified by TLC and reverse phase HPLC. The structure elucidation of the pure substance, using combined data from UV visible, NMR spectra, and mass spectrometry, permitted to identify it as actinomycin D, and was thus found for the first time in S. mutabilis related species. The biocontrol abilities of the strain IA1 and compound YA were evaluated through two diseases, i.e., chocolate spot of field bean and Fusarium wilt of flax. The occurrence of the two fungal diseases was effectively reduced. The reduction of chocolate spot disease symptoms reached 80 and 91.7% with IA1 and YA seedlings pretreatments, respectively. Soil pretreatment with IA1 or YA also allowed to reduce Fusarium wilt disease impact by almost 60%.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Dactinomicina/biosíntesis , Dactinomicina/farmacología , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Streptomyces/metabolismo , Argelia , Antibiosis , Agentes de Control Biológico , Cromatografía de Fase Inversa , Cromatografía en Capa Delgada , Dactinomicina/química , Dactinomicina/aislamiento & purificación , Lino/microbiología , Fusarium/fisiología , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Resonancia Magnética Nuclear Biomolecular , Plantones/crecimiento & desarrollo , Plantones/fisiología , Análisis de Secuencia de ADN , Microbiología del Suelo , Streptomyces/clasificación , Streptomyces/genética , Streptomyces/aislamiento & purificación , Vicia faba/microbiología
17.
World J Microbiol Biotechnol ; 31(6): 875-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25763567

RESUMEN

The cereal-pathogenic Fusarium culmorum (W.G. Smith), causal agent of various blights and rot diseases, is considered as a chronic fungus of economic concern worldwide including North African countries such as Algeria. This pathogen produces a wide range of mycotoxins, amongst which the type B-trichothecene deoxynivalenol (DON). In addition to its acute and chronic side effects in livestock and humans, DON is believed to play a determinant role in the pathogenesis toward Triticeae. However, regardless its significant occurrence and impact, little is known about trichothecenes-producing ability of F. culmorum infecting cereals in Algeria. The PCR assay based on Tri genes of 12 F. culmorum strains (designated Fc1-Fc12), which were recovered from several cropping areas of North Algeria, revealed their trichothecenes-producing ability with 3-AcDON genotype. The molecular prediction was confirmed by HPLC analysis. All strains were able to produce the toxin at detectable levels. Strains Fc1 and Fc12 were the highest producers of this mycotoxin with 220 and 230 µg g(-1), respectively. The evaluation of pathogenic ability of strains through a barley infesting experiment exhibited the significant disease impact of most strains. Significant correlation between the DON-producing ability of strains and the increase in both disease severity (r = 0.88, P = 0.05) and disease occurrence (r = 0.70, P = 0.05) was observed. Chemotyping of F. culmorum isolates and evaluation of their pathogenic ability are reported for the first time for isolates from Algeria, and highlights the important potential of F. culmorum to contaminate cultivated cereal with DON trichothecenes.


Asunto(s)
Fusarium/metabolismo , Hordeum/microbiología , Tricotecenos/metabolismo , Argelia , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , ADN de Hongos/genética , Genes Fúngicos , Genotipo , Reacción en Cadena de la Polimerasa
18.
Antonie Van Leeuwenhoek ; 106(2): 287-92, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24858572

RESUMEN

A halophilic actinomycete strain, designated H27(T), was isolated from a soil sample collected from a hypersaline habitat in Djelfa Province (North-Central Algeria), and then investigated using a polyphasic taxonomic approach. The strain was observed to produce poor aerial mycelium, which formed short chains of oval to cylindrical-shaped spores at maturity, and non fragmented substrate mycelium. The optimum NaCl concentration for growth was found to be 10-15 % (w/v) and the optimum growth temperature and pH were found to be 28-37 °C and 6-7, respectively. The diagnostic diamino acid in the cell-wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinones of strain H27(T) were identified as MK-11 (H4) and MK-10 (H6). The major fatty acids were found to be iso-C16:0, anteiso-C17:0, 10 methyl C17:0 and 10 methyl C16:0. The diagnostic phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol. The chemotaxonomic properties of strain H27(T) are consistent with those shared by members of the genus Streptomonospora. 16S rRNA gene sequence analysis indicated that strain H27(T) is most closely related to Streptomonospora alba DSM 44588(T) (98.8 %) and Streptomonospora flavalba DSM 45155(T) (98.7 %) whereas the DNA-DNA relatedness values between strain H27(T) and the two type strains were 17.1 and 57.9 %, respectively. Based on the combined genotypic and phenotypic evidence, it is proposed that strain H27(T) should be classified as representative of a novel species, for which the name Streptomonospora algeriensis sp. nov. is proposed. The type strain is H27(T) (=DSM 45604(T) =CCUG 63369(T) =MTCC 11563(T)).


Asunto(s)
Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Microbiología del Suelo , Actinobacteria/genética , Actinobacteria/fisiología , Argelia , Técnicas de Tipificación Bacteriana , Pared Celular/química , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácido Diaminopimélico/análisis , Ácidos Grasos/análisis , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Peptidoglicano/análisis , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Esporas Bacterianas/citología , Temperatura , Vitamina K 2/análisis
19.
Int J Syst Evol Microbiol ; 63(Pt 2): 549-553, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22523169

RESUMEN

An actinomycete, designated SA181(T), was isolated from Saharan soil in the Hoggar region (south Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the isolate were consistent with the genus Saccharothrix, and 16S rRNA gene sequence analysis confirmed that strain SA181(T) was a novel member of the genus Saccharothrix. DNA-DNA hybridization values between strain SA181(T) and its closest phylogenetic neighbours, the type strains of Saccharothrix longispora, Saccharothrix texasensis and Saccharothrix xinjiangensis, were clearly below the 70 % threshold. The genotypic and phenotypic data showed that the isolate represents a novel species of the genus Saccharothrix, for which the name Saccharothrix hoggarensis sp. nov. is proposed, with the type strain SA181(T) ( = DSM 45457(T)  = CCUG 60214(T)).


Asunto(s)
Actinomycetales/clasificación , Clima Desértico , Filogenia , Microbiología del Suelo , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , Argelia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Int J Syst Evol Microbiol ; 63(Pt 10): 3744-3749, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23645017

RESUMEN

The taxonomic position of a novel actinomycete, strain SA152(T), isolated from a sample of Algerian Saharan soil, was determined using a polyphasic taxonomic approach. The strain produced abundant aerial mycelium and fragmented substrate mycelium on most media tested. Chemotaxonomically and phylogenetically, the strain was related to the members of the genus Saccharothrix. Results of 16S rRNA gene sequence comparison revealed that strain SA152(T) shared the highest degree of 16S rRNA gene sequence similarity with Saccharothrix xinjiangensis NBRC 101911(T) (99.3 %) and Saccharothrix texasensis NRRL B-16134(T) (98.9 %). However, DNA-DNA hybridization studies showed only 16.2 % relatedness with S. xinjiangensis DSM 44896(T) and 33.9 % relatedness with S. texasensis DSM 44231(T). Based upon genotypic and phenotypic differences from other members of the genus, a novel species, Saccharothrix saharensis sp. nov., is proposed, with SA152(T) ( = DSM 45456(T) = CCUG 60213(T)) as the type strain.


Asunto(s)
Actinomycetales/clasificación , Filogenia , Microbiología del Suelo , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , Argelia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácido Diaminopimélico/análisis , Ácidos Grasos/análisis , Genotipo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Fenotipo , Fosfatidiletanolaminas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA