Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genes Cells ; 27(5): 356-367, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35238109

RESUMEN

The structure-specific endonuclease XPF-ERCC1 is a multi-functional heterodimer that participates in a variety of DNA repair mechanisms for maintaining genome integrity. Both subunits contain C-terminal tandem helix-hairpin-helix (HhH2 ) domains, which are necessary for not only their dimerization but also enzymatic activity as well as protein stability. However, the interdependency of both subunits in their nuclear localization remains poorly understood. In this study, we have analyzed the region(s) that affects the subcellular localization of XPF and ERCC1 using various deletion mutants. We first identified the nuclear localization signal (NLS) in XPF, which was essential for its nuclear localization under the ERCC1-free condition, but dispensable in the presence of ERCC1 (probably as XPF-ERCC1 heterodimer). Interestingly, in the NLS-independent and ERCC1-dependent XPF nuclear localization, the physical interaction between XPF and ERCC1 via C-terminal HhH2 domains was not needed. Instead, the amino acid regions 311-469 of XPF and 216-260 of ERCC1 are required for the nuclear localization. Furthermore, we found that the 311-469 region of XPF interacts with ERCC1 in a co-immunoprecipitation assay. These results suggest that the nuclear localization of XPF-ERCC1 heterodimer is regulated at multiple levels in an interdependent manner.


Asunto(s)
Reparación del ADN , Endonucleasas , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo
2.
Bioconjug Chem ; 34(11): 2022-2033, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37861691

RESUMEN

Modified antibodies have essential roles in analytic, diagnostic, and therapeutic uses, and thus, these antibodies are required to have optimal physical and biological properties. Consequently, the development of methods for site-selective antibody modification is crucial. Herein, we used epitope-based affinity labeling to introduce a Fab region-selective antibody modification method. Although labeling that exploits the high affinity between an antibody and its epitope may appear straightforward, it remains challenging probably because of the loss of target affinity caused by modification around the epitope-binding site. By thoroughly screening the modifying agent structure, reaction conditions, and purification methods, we developed an efficient method for the selective modification of the Fab region of the antibody while maintaining the high affinity for the epitope.


Asunto(s)
Anticuerpos Monoclonales , Fragmentos Fab de Inmunoglobulinas , Epítopos/química , Anticuerpos Monoclonales/química , Afinidad de Anticuerpos
3.
Proc Natl Acad Sci U S A ; 117(25): 14412-14420, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513688

RESUMEN

Nucleotide excision repair (NER) removes helix-destabilizing adducts including ultraviolet (UV) lesions, cyclobutane pyrimidine dimers (CPDs), and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). In comparison with CPDs, 6-4PPs have greater cytotoxicity and more strongly destabilizing properties of the DNA helix. It is generally believed that NER is the only DNA repair pathway that removes the UV lesions as evidenced by the previous data since no repair of UV lesions was detected in NER-deficient skin fibroblasts. Topoisomerase I (TOP1) constantly creates transient single-strand breaks (SSBs) releasing the torsional stress in genomic duplex DNA. Stalled TOP1-SSB complexes can form near DNA lesions including abasic sites and ribonucleotides embedded in chromosomal DNA. Here we show that base excision repair (BER) increases cellular tolerance to UV independently of NER in cancer cells. UV lesions irreversibly trap stable TOP1-SSB complexes near the UV damage in NER-deficient cells, and the resulting SSBs activate BER. Biochemical experiments show that 6-4PPs efficiently induce stable TOP1-SSB complexes, and the long-patch repair synthesis of BER removes 6-4PPs downstream of the SSB. Furthermore, NER-deficient cancer cell lines remove 6-4PPs within 24 h, but not CPDs, and the removal correlates with TOP1 expression. NER-deficient skin fibroblasts weakly express TOP1 and show no detectable repair of 6-4PPs. Remarkably, the ectopic expression of TOP1 in these fibroblasts led them to completely repair 6-4PPs within 24 h. In conclusion, we reveal a DNA repair pathway initiated by TOP1, which significantly contributes to cellular tolerance to UV-induced lesions particularly in malignant cancer cells overexpressing TOP1.


Asunto(s)
Roturas del ADN de Cadena Simple/efectos de la radiación , Reparación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Rayos Ultravioleta/efectos adversos , Sistemas CRISPR-Cas/genética , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Humanos , Células MCF-7 , Cultivo Primario de Células , Piel/citología , Piel/patología , Piel/efectos de la radiación , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Xerodermia Pigmentosa/etiología , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-33638630

RESUMEN

BACKGROUND: Cyclosporin A (CSA) and tacrolimus (TAC) suppress T-cell activation and subsequent proliferation by inhibiting calcineurin. Though they have the same target, CSA and TAC have quite different molecular structures, indicating quantitative and/or qualitative differences in their effects. OBJECTIVE: CD28 is a costimulatory molecule that enhances T-cell activation. It has also been shown to attenuate calcineurin inhibitors. In this study, we compared the CD28-mediated resistance of CD4+ T cells to those calcineurin inhibitors and tried to predict CD28's impact on infectious diseases. METHODS: CD4+ T-cell proliferation was induced with anti-CD3 mAb in the presence or absence of anti-CD28 mAb in vitro. CSA or TAC was added at various concentrations, and the half-maximal inhibitory concentration on CD4+ T-cell proliferation was determined. Effects of lipopolysaccharide (LPS) on dendritic cells (DCs) and CD4+ T-cell proliferation were also evaluated in vitro. RESULTS: Anti-CD28 mAb conferred CD4+ T cells with resistance to both CSA and TAC, and CD28's effect on the latter was approximately twice that on the former. LPS induced expression of CD28 ligands CD80/86 on DCs. The addition of LPS to culture containing DCs seemed to make CD4+ T cells slightly resistant to TAC but not to CSA. However, its effect on the former was very weak under our experimental conditions. CONCLUSIONS: CD28 attenuated TAC more strongly than CSA. Although LPS did not demonstrate strong enough resistance in our in vitro model, TAC might maintain a better antibacterial immune response than CSA in clinical use.

5.
Genes Cells ; 24(4): 284-296, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30762924

RESUMEN

The multisubunit complex transcription factor IIH (TFIIH) has dual functions in transcriptional initiation and nucleotide excision repair (NER). TFIIH is comprised of two subcomplexes, the core subcomplex (seven subunits) including XPB and XPD helicases and the cyclin-dependent kinase (CDK)-activating kinase (CAK) subcomplex (three subunits) containing CDK7 kinase. Recently, it has been reported that spironolactone, an anti-aldosterone drug, inhibits cellular NER by inducing proteasomal degradation of XPB and potentiates the cytotoxicity of platinum-based drugs in cancer cells, suggesting possible drug repositioning. In this study, we have tried to uncover the mechanism underlying the chemical-induced XPB destabilization. Based on siRNA library screening and subsequent analyses, we identified SCFFBXL18 E3 ligase consisting of Skp1, Cul1, F-box protein FBXL18 and Rbx1 responsible for spironolactone-induced XPB polyubiquitination and degradation. In addition, we showed that CDK7 kinase activity is required for this process. Finally, we found that the Ser90 residue of XPB is essential for the chemical-induced destabilization. These results led us to propose a model that spironolactone may trigger the phosphorylation of XPB at Ser90 by CDK7, which promotes the recognition and polyubiquitination of XPB by SCFFBXL18 for proteasomal degradation.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas F-Box/metabolismo , Espironolactona/farmacología , Factor de Transcripción TFIIH/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteolisis/efectos de los fármacos , Quinasa Activadora de Quinasas Ciclina-Dependientes
6.
Biochem Biophys Res Commun ; 519(1): 204-210, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31493872

RESUMEN

The ERCC1-XPF heterodimer is a structure-specific endonuclease and plays multiple roles in various DNA repair pathways including nucleotide excision repair and also telomere maintenance. The dimer formation, which is mediated by their C-terminal helix-hairpin-helix regions, is essential for their endonuclease activity as well as the stability of each protein. However, the detailed mechanism of how a cellular level of ERCC1-XPF is regulated still remains elusive. Here, we report the identification of DDB1- and CUL4-associated factor 7 (DCAF7, also known as WDR68/HAN11) as a novel interacting protein of ERCC1-XPF by mass spectrometry after tandem purification. Immunoprecipitation experiments confirmed their interaction and suggested dominant association of DCAF7 with XPF but not ERCC1. Interestingly, siRNA-mediated knockdown of DCAF7, but not DDB1, attenuated the cellular level of ERCC1-XPF, which is partly dependent on proteasome. The depletion of TCP1α, one of components of the molecular chaperon TRiC/CCT known to interact with DCAF7 and promote its folding, also reduced ERCC1-XPF level. Finally, we show that the depletion of DCAF7 causes inefficient repair of UV-induced (6-4) photoproducts, which can be rescued by ectopic overexpression of XPF or ERCC1-XPF. Altogether, our results strongly suggest that DCAF7 is a novel regulator of ERCC1-XPF protein level and cellular nucleotide excision repair activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Línea Celular , Regulación hacia Abajo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Multimerización de Proteína
7.
Org Biomol Chem ; 16(23): 4320-4324, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29808899

RESUMEN

Concisely synthesized and functionalized dihydroasparagusic acid (DHAA) derivatives were used to show that the introduction of a hydrophobic functional group dramatically reduced air oxidation activity at the dithiol moieties and dominantly activated the cleavage of S-S bonds in proteins, presumably due to the hydrophobization and lipophilization. Notably, the reaction sites of water-reactive dithiol moieties behaved similarly to hydrophobic and lipophilic functional groups, which suggests impersonation of the reaction site.

8.
Microbiol Immunol ; 61(5): 168-175, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28370382

RESUMEN

T-cell population consists of two major subsets, CD4+ T cells and CD8+ T cells, which can be distinguished by the expression of CD4 or CD8 molecules, respectively. Although they play quite different roles in the immune system, many of their basic cellular processes such as proliferation following stimulation are presumably common. In this study, we have carefully analyzed time-course of G0/1 transition as well as cell cycle progression in the two subsets of quiescent T-cell population following in vitro growth stimulation. We found that CD8+ T cells promote G0/1 transition more rapidly and drive their cell cycle progression faster compared to CD4+ T cells. In addition, expression of CD25 and effects of its blockade revealed that IL-2 is implicated in the rapid progression, but not the earlier G0/1 transition, of CD8+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Fase G1/genética , Activación de Linfocitos/inmunología , Fase de Descanso del Ciclo Celular/genética , Animales , Proliferación Celular , Células Cultivadas , Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Ratones
9.
J Biol Chem ; 289(41): 28730-7, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25164823

RESUMEN

Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Fase de Descanso del Ciclo Celular/efectos de la radiación , Transducción de Señal/efectos de la radiación , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Proteína Homóloga de MRE11 , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Cultivo Primario de Células , Fase de Descanso del Ciclo Celular/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Linfocitos T/efectos de la radiación , Transactivadores/genética , Transactivadores/metabolismo , Rayos Ultravioleta
10.
Genes Cells ; 19(4): 350-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24520900

RESUMEN

The ultraviolet B (UVB) component of sunlight can cause severe damage to skin cells and even induce skin cancer. Growing evidence indicates that the UVB-induced signaling network is complex and involves diverse cellular processes. In this study, we investigated the role of c-Jun NH2 -terminal kinase-associated leucine zipper protein (JLP), a scaffold protein for mitogen-activated protein kinase (MAPK) signaling cascades, in UVB-induced apoptosis. We found that UVB-induced skin epidermal apoptosis was prevented in Jlp knockout (KO) as well as in keratinocyte-specific Jlp KO mice. Analysis of the repair of UVB-induced DNA damage over time showed no evidence for the involvement of JLP in this process. In contrast, UVB-stimulated p38 MAPK activation in the skin was impaired in both Jlp KO and keratinocyte-specific Jlp KO mice. Moreover, topical treatment of UVB-irradiated mouse skin with a p38 inhibitor significantly suppressed the epidermal apoptosis in wild-type mice, but not in Jlp KO mice. Our findings suggest that JLP in skin basal keratinocytes plays an important role in UVB-induced apoptosis by modulating p38 MAPK signaling pathways. This is the first study to show a critical role for JLP in an in vivo response to environmental stimulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/efectos de los fármacos , Fragmentación del ADN , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/patología , Epidermis/efectos de la radiación , Imidazoles/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Cell Mol Biol Lett ; 19(4): 638-48, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25424911

RESUMEN

Peripheral T cells are in G0 phase and do not proliferate. When they encounter an antigen, they enter the cell cycle and proliferate in order to initiate an active immune response. Here, we have determined the first two cell cycle times of a leading population of CD4(+) T cells stimulated by PMA plus ionomycin in vitro. The first cell cycle began around 10 h after stimulation and took approximately 16 h. Surprisingly, the second cell cycle was extremely rapid and required only 6 h. T cells might have a unique regulatory mechanism to compensate for the shortage of the gap phases in cell cycle progression. This unique feature might be a basis for a quick immune response against pathogens, as it maximizes the rate of proliferation.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Proliferación Celular , Animales , División Celular , Células Cultivadas , Ganglios Linfáticos/citología , Activación de Linfocitos , Ratones , Fase de Descanso del Ciclo Celular
12.
J Cell Sci ; 124(Pt 16): 2816-25, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21807946

RESUMEN

Cdc25A, which is one of the three mammalian CDK-activating Cdc25 protein phosphatases (Cdc25A, B and C), is degraded through SCF(ßTrCP)-mediated ubiquitylation following genomic insult; however, the regulation of the stability of the other two Cdc25 proteins is not well understood. Previously, we showed that Cdc25B is primarily degraded by cellular stresses that activate stress-activated MAPKs, such as Jun NH(2)-terminal kinase (JNK) and p38. Here, we report that Cdc25B was ubiquitylated by SCF(ßTrCP) E3 ligase upon phosphorylation at two Ser residues in the ßTrCP-binding-motif-like sequence D(94)AGLCMDSPSP(104). Point mutation of these Ser residues to alanine (Ala) abolished the JNK-induced ubiquitylation by SCF(ßTrCP), and point mutation of DAG to AAG or DAA eradicated both ßTrCP binding and ubiquitylation. Further analysis of the mode of ßTrCP binding to this region revealed that the PEST-like sequence from E(82)SS to D(94)AG is crucially involved in both the ßTrCP binding and ubiquitylation of Cdc25B. Furthermore, the phospho-mimetic replacement of all 10 Ser residues in the E(82)SS to SPSP(104) region with Asp resulted in ßTrCP binding. Collectively, these results indicate that stress-induced Cdc25B ubiquitylation by SCF(ßTrCP) requires the phosphorylation of S(101)PS(103)P in the ßTrCP-binding-motif-like and adjacent PEST-like sequences.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Proteolisis , Proteínas Ligasas SKP Cullina F-box/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Daño del ADN , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Mutación/genética , Fosforilación/genética , Unión Proteica/genética , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Serina/genética , Serina/metabolismo , Ubiquitinación/genética , Fosfatasas cdc25/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-37003653

RESUMEN

Evidence is accumulating that ultraviolet A (UVA) plays an important role in photo-carcinogenesis. However, the types of DNA damage involved in the resulting mutations remain unclear. Previously, using Drosophila, we found that UVA from light-emitting diode (LED-UVA) induces double-strand breaks in DNA through oxidative damage in an oxidative damage-sensitive (urate-null) strain. Recently, it was proposed that cyclobutane pyrimidine dimers (CPDs), which also are induced by UVA irradiation, might play a significant role in the induction of mutations. In the present study, we investigated whether reactive oxygen species (ROS) and CPDs are produced in larval bodies following LED-UVA irradiation. In addition, we assessed the somatic cell mutation rate in urate-null Drosophila induced by monochromatic UVA irradiation. The production of ROS through LED-UVA irradiation was markedly higher in the urate-null strain than in the wild-type Drosophila. CPDs were detected in the DNA of both of UVA- and UVB-irradiated larvae. The level of CPDs was unexpectedly higher in the wild-type strain than in urate-null flies following UVA irradiation, whereas this parameter was expectedly similar between the urate-null and wild-type Drosophila following UVB irradiation. The somatic cell mutation rate induced by UVA irradiation was higher in the urate-null strain than in the wild-type strain. These results suggest that mutations induced by UVA-specific pathways occur through ROS production, rather than via CPD formation.


Asunto(s)
Drosophila , Mutágenos , Animales , Especies Reactivas de Oxígeno , Drosophila/genética , Drosophila/metabolismo , Larva/genética , Ácido Úrico , Daño del ADN , Dímeros de Pirimidina , Rayos Ultravioleta/efectos adversos , ADN
14.
DNA Repair (Amst) ; 113: 103318, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35325630

RESUMEN

DNA-damaging anti-cancer drugs are used clinically to induce cell death by causing DNA strand breaks or DNA replication stress. Camptothecin (CPT) and cisplatin are commonly used anti-cancer drugs, and their combined use enhances the anti-tumour effects. However, the mechanism underlying this enhanced effect has not been well studied. In this study, we analysed the combined effect of CPT and cisplatin or ultraviolet (UV) and found that CPT suppresses transcription recovery after UV damage and induces the disappearance of the Cockayne syndrome group B (CSB) protein, a transcription-coupled nucleotide excision repair (TC-NER) factor. This CPT-induced disappearance of CSB expression was suppressed by proteasome and transcription inhibitors. Moreover, CSB ubiquitination was detected after CPT treatment in a transcription-dependent manner, suggesting that the transcription stress caused by CPT induces CSB ubiquitination, resulting in CSB undetectability. However, Cockayne syndrome group A (CSA) and CUL4A were not involved in the CPT-induced CSB undetectability, suggesting that CSB ubiquitination caused by CPT is regulated differently from the UV response. However, cisplatin or UV sensitivity was enhanced by CPT even in CSB- or CSA-knockout cells. Furthermore, the excessive CSB expression, which suppressed CSB ubiquitination, did not cancel the combined effect of CPT. These results suggest that CPT blocks the repair of cisplatin or UV-induced DNA damage regardless of TC-NER status. CPT possibly compromised the alternative repair pathways other than TC-NER, leading to the suppression of transcription recovery and enhancement of cell killing.

15.
Nucleic Acids Res ; 37(2): 516-25, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19056823

RESUMEN

Damaged DNA-binding protein (DDB), consisting of DDB1 and DDB2 subunits recognizes a wide spectrum of DNA lesions. DDB is dispensable for in vitro nucleotide excision repair (NER) reaction, but stimulates this reaction especially for cyclobutane pyrimidine dimer (CPD). Here we show that DDB directly interacts with XPA, one of core NER factors, mainly through DDB2 subunit and the amino-acid residues between 185 and 226 in XPA are important for the interaction. Interestingly, the point mutation causing the substitution from Arg-207 to Gly, which was previously identified in a XP-A revertant cell-line XP129, diminished the interaction with DDB in vitro and in vivo. In a defined system containing R207G mutant XPA and other core NER factors, DDB failed to stimulate the excision of CPD, although the mutant XPA was competent for the basal NER reaction. Moreover, in vivo experiments revealed that the mutant XPA is recruited to damaged DNA sites with much less efficiency compared with wild-type XPA and fails to support the enhancement of CPD repair by ectopic expression of DDB2 in SV40-transformed human cells. These results suggest that the physical interaction between DDB and XPA plays an important role in the DDB-mediated NER reaction.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Línea Celular , Línea Celular Transformada , Núcleo Celular/metabolismo , Daño del ADN , Humanos , Mutación Missense , Dominios y Motivos de Interacción de Proteínas , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
16.
PLoS One ; 14(3): e0213383, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30840704

RESUMEN

Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.


Asunto(s)
Daño del ADN , Proteínas Nucleares/metabolismo , Animales , Proteínas Aviares/deficiencia , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Pollos , ADN/biosíntesis , ADN/genética , ADN Polimerasa beta/deficiencia , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN Primasa/deficiencia , ADN Primasa/genética , ADN Primasa/metabolismo , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Técnicas de Inactivación de Genes , Genes de Inmunoglobulinas , Humanos , Enzimas Multifuncionales/deficiencia , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Moldes Genéticos
17.
Biochem Biophys Res Commun ; 370(2): 301-5, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18367095

RESUMEN

To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells.


Asunto(s)
Vectores Genéticos/genética , Plásmidos/genética , Interferencia de ARN , ARN Interferente Pequeño/biosíntesis , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Supervivencia Celular , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Células HeLa , Humanos , ARN Interferente Pequeño/genética , Transfección , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
18.
Biochem Biophys Res Commun ; 364(4): 771-7, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17976535

RESUMEN

DDB1 was originally identified as a heterodimeric complex with DDB2 and plays an accessory role in nucleotide excision repair. DDB1 also constitutes an E3 ubiquitin ligase complex together with Cul4A and Roc1 and acts as an adaptor, suggesting its multiple roles beyond DNA repair. We have generated a conditional DDB1-knockout mutant using a chicken B lymphocyte line DT40. Doxycycline-induced DDB1 depletion caused a severe growth defect followed by apoptotic cell death. Flow cytometric analyses revealed that cell cycle progression is initially retarded at all phases and subsequently impaired at S phase along with the appearance of sub-G1 population. Similarly, DDB1-knockdown in human U2OS cells by small interfering RNA exhibited a loss of clonogenic activity and perturbed cell cycle progression. These results demonstrate that the DDB1 gene is indispensable for cell viability in higher vertebrates and this conditional DDB1-knockout clone would be highly useful for the functional analysis of DDB1.


Asunto(s)
Apoptosis , Linfocitos B/metabolismo , Linfocitos B/patología , Proteínas de Unión al ADN/genética , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Animales , Línea Celular , Pollos , Silenciador del Gen
19.
Mol Cell Biol ; 24(9): 3712-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15082767

RESUMEN

In addition to xeroderma pigmentosum (XP), mutations in the human XPG gene cause early onset of Cockayne syndrome (CS) in some patients (XPG/CS). The CS-causing mutations in such patients all produce truncated XPG proteins. To test the hypothesis that the CS phenotype, with characteristics such as growth retardation and a short life span in XPG/CS patients, results from C-terminal truncations, we constructed mutants with C-terminal truncations in mouse XPG (Xpg) (from residue D811 to the stop codon [XpgD811stop] and deletion of exon 15 [Xpg Delta ex15]). In the XpgD811stop and Xpg Delta ex15 mutations, the last 360 and 183 amino acids of the protein were deleted, respectively. To generate Xpg mutant mice, we devised the shortcut knock-in method by replacing genomic DNA with a mutated cDNA fragment (cDNA-mediated knock in). The control mice, in which one-half of Xpg genomic DNA fragment was replaced with a normal Xpg cDNA fragment, had a normal growth rate, a normal life span, normal sensitivity to UV light, and normal DNA repair ability, indicating that the Xpg gene partially replaced with the normal cDNA fragment retained normal functions. The XpgD811stop homozygous mice exhibited growth retardation and a short life span, but the Xpg Delta ex15 homozygous mice did not, indicating that deletion of the last 360 amino acids results in the CS phenotype but deletion of the last 183 amino acids does not. The XpgD811stop homozygous mice, however, exhibited a slightly milder CS phenotype than did the Xpg null mutant mice, indicating that the XpgD811stop protein still retains some Xpg function that affects the severity of the CS phenotype.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/genética , Animales , Células Cultivadas , Niño , Síndrome de Cockayne/fisiopatología , Daño del ADN , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Exones , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Marcación de Gen , Humanos , Lactante , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas Nucleares , Tasa de Supervivencia , Factores de Transcripción , Rayos Ultravioleta
20.
Sci Rep ; 7(1): 13808, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29061988

RESUMEN

Accumulating evidence indicates that transcription is closely related to DNA damage formation and that the loss of RNA biogenesis factors causes genome instability. However, whether such factors are involved in DNA damage responses remains unclear. We focus here on the RNA helicase Aquarius (AQR), a known R-loop processing factor, and show that its depletion in human cells results in the accumulation of DNA damage during S phase, mediated by R-loop formation. We investigated the involvement of Aquarius in DNA damage responses and found that AQR knockdown decreased DNA damage-induced foci formation of Rad51 and replication protein A, suggesting that Aquarius contributes to homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSBs). Interestingly, the protein level of CtIP, a DSB processing factor, was decreased in AQR-knockdown cells. Exogenous expression of Aquarius partially restored CtIP protein level; however, CtIP overproduction did not rescue defective HR in AQR-knockdown cells. In accordance with these data, Aquarius depletion sensitized cells to genotoxic agents. We propose that Aquarius contributes to the maintenance of genomic stability via regulation of HR by CtIP-dependent and -independent pathways.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Neoplasias/genética , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , Reparación del ADN por Recombinación , Proteínas Portadoras/genética , Endodesoxirribonucleasas , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/genética , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA