Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Glob Chang Biol ; 29(19): 5596-5614, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37492997

RESUMEN

Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: 'middle-of-the-road' and 'fossil-fuelled development' scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a 'fossil-fuelled development' scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s-1 ) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.


Asunto(s)
Charadriiformes , Cambio Climático , Animales , Calentamiento Global , Océano Atlántico , Viento , Regiones Árticas
2.
J Environ Manage ; 307: 114577, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091240

RESUMEN

Offshore wind energy is expanding globally and new floating wind turbine technology now allows wind energy developments in areas previously too deep for fixed-platform turbines. Floating offshore wind has the potential to greatly expand our renewable energy portfolio, but with rapid expansion planned globally, concerns exist regarding impacts to marine species and habitats. Floating turbines currently exist in three countries but large-scale and rapid expansion is planned in over a dozen. This technology comes with unique potential ecological impacts. Here, we outline the various floating wind turbine configurations, and consider the potential impacts on marine mammals, seabirds, fishes and benthic ecosystems. We focus on the unique risks floating turbines may pose with respect to: primary and secondary entanglement of marine life in debris ensnared on mooring lines used to stabilize floating turbines or dynamic inter-array cables; behavioral modification and displacement, such as seabird attraction to perching opportunities; turbine and vessel collision; and benthic habitat degradation from turbine infrastructure, for example from scour from anchors and inter-array cables. We highlight mitigation techniques that can be applied by managers or mandated through policy, such as entanglement deterrents or the use of cable and mooring line monitoring technologies to monitor for and reduce entanglement potential, or smart siting to reduce impacts to critical habitats. We recommend turbine configurations that are likely to have the lower ecological impacts, particularly taut or semi-taut mooring configurations, and we recommend studies and technologies still needed that will allow for floating turbines to be applied with limited ecological impacts, for example entanglement monitoring and deterrent technologies. Our review underscores additional research and mitigation techniques are required for floating technology, beyond those needed for pile-driven offshore or inshore turbines, and that understanding and mitigating the unique impacts from this technology is critical to sustainability of marine ecosystems.


Asunto(s)
Ecosistema , Energía Renovable , Animales , Océanos y Mares , Tecnología , Viento
3.
Proc Natl Acad Sci U S A ; 115(28): 7362-7367, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941592

RESUMEN

Incidental catch of nontarget species (bycatch) is a major barrier to ecological and economic sustainability in marine capture fisheries. Key to mitigating bycatch is an understanding of the habitat requirements of target and nontarget species and the influence of heterogeneity and variability in the dynamic marine environment. While patterns of overlap among marine capture fisheries and habitats of a taxonomically diverse range of marine vertebrates have been reported, a mechanistic understanding of the real-time physical drivers of bycatch events is lacking. Moving from describing patterns toward understanding processes, we apply a Lagrangian analysis to a high-resolution ocean model output to elucidate the fundamental mechanisms that drive fisheries interactions. We find that the likelihood of marine megafauna bycatch is intensified in attracting Lagrangian coherent structures associated with submesoscale and mesoscale filaments, fronts, and eddies. These results highlight how the real-time tracking of dynamic structures in the oceans can support fisheries sustainability and advance ecosystem-based management.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Explotaciones Pesqueras , Peces/fisiología , Modelos Biológicos , Océanos y Mares , Animales
4.
Proc Biol Sci ; 286(1911): 20191472, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31551061

RESUMEN

The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales , Política Ambiental , Animales , Ecosistema , Geografía , Océanos y Mares
5.
Proc Natl Acad Sci U S A ; 113(3): 668-73, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26729885

RESUMEN

In response to the inherent dynamic nature of the oceans and continuing difficulty in managing ecosystem impacts of fisheries, interest in the concept of dynamic ocean management, or real-time management of ocean resources, has accelerated in the last several years. However, scientists have yet to quantitatively assess the efficiency of dynamic management over static management. Of particular interest is how scale influences effectiveness, both in terms of how it reflects underlying ecological processes and how this relates to potential efficiency gains. Here, we address the empirical evidence gap and further the ecological theory underpinning dynamic management. We illustrate, through the simulation of closures across a range of spatiotemporal scales, that dynamic ocean management can address previously intractable problems at scales associated with coactive and social patterns (e.g., competition, predation, niche partitioning, parasitism, and social aggregations). Furthermore, it can significantly improve the efficiency of management: as the resolution of the closures used increases (i.e., as the closures become more targeted), the percentage of target catch forgone or displaced decreases, the reduction ratio (bycatch/catch) increases, and the total time-area required to achieve the desired bycatch reduction decreases. In the scenario examined, coarser scale management measures (annual time-area closures and monthly full-fishery closures) would displace up to four to five times the target catch and require 100-200 times more square kilometer-days of closure than dynamic measures (grid-based closures and move-on rules). To achieve similar reductions in juvenile bycatch, the fishery would forgo or displace between USD 15-52 million in landings using a static approach over a dynamic management approach.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Océanos y Mares , Animales , Simulación por Computador , Ecosistema , Modelos Teóricos , Análisis Espacio-Temporal
6.
Ecol Appl ; 27(8): 2313-2329, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28833890

RESUMEN

The ocean is a dynamic environment inhabited by a diverse array of highly migratory species, many of which are under direct exploitation in targeted fisheries. The timescales of variability in the marine realm coupled with the extreme mobility of ocean-wandering species such as tuna and billfish complicates fisheries management. Developing eco-informatics solutions that allow for near real-time prediction of the distributions of highly mobile marine species is an important step towards the maturation of dynamic ocean management and ecological forecasting. Using 25 yr (1990-2014) of NOAA fisheries' observer data from the California drift gillnet fishery, we model relative probability of occurrence (presence-absence) and catchability (total catch per gillnet set) of broadbill swordfish Xiphias gladius in the California Current System. Using freely available environmental data sets and open source software, we explore the physical drivers of regional swordfish distribution. Comparing models built upon remotely sensed data sets with those built upon a data-assimilative configuration of the Regional Ocean Modelling System (ROMS), we explore trade-offs in model construction, and address how physical data can affect predictive performance and operational capacity. Swordfish catchability was found to be highest in deeper waters (>1,500 m) with surface temperatures in the 14-20°C range, isothermal layer depth (ILD) of 20-40 m, positive sea surface height (SSH) anomalies, and during the new moon (<20% lunar illumination). We observed a greater influence of mesoscale variability (SSH, wind speed, isothermal layer depth, eddy kinetic energy) in driving swordfish catchability (total catch) than was evident in predicting the relative probability of presence (presence-absence), confirming the utility of generating spatiotemporally dynamic predictions. Data-assimilative ROMS circumvent the limitations of satellite remote sensing in providing physical data fields for species distribution models (e.g., cloud cover, variable resolution, subsurface data), and facilitate broad-scale prediction of dynamic species distributions in near real time.


Asunto(s)
Explotaciones Pesqueras , Peces , Tecnología de Sensores Remotos/métodos , Animales , California , Biología Computacional , Ecología , Modelos Biológicos , Océano Pacífico
8.
Conserv Biol ; 28(2): 604-15, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24495092

RESUMEN

Humpback whales (Megaptera novaeangliae) are managed by the International Whaling Commission as 7 primary populations that breed in the tropics and migrate to 6 feeding areas around the Antarctic. There is little information on individual movements within breeding areas or migratory connections to feeding grounds. We sought to better understand humpback whale habitat use and movements at breeding areas off West Africa, and during the annual migration to Antarctic feeding areas. We also assessed potential overlap between whale habitat and anthropogenic activities. We used Argos satellite-monitored radio tags to collect data on 13 animals off Gabon, a primary humpback whale breeding area. We quantified habitat use for 3 cohorts of whales and used a state-space model to determine transitions in the movement behavior of individuals. We developed a spatial metric of overlap between whale habitat and models of cumulative human activities, including oil platforms, toxicants, and shipping. We detected strong heterogeneity in movement behavior over time that is consistent with previous genetic evidence of multiple populations in the region. Breeding areas for humpback whales in the eastern Atlantic were extensive and extended north of Gabon late in the breeding season. We also observed, for the first time, direct migration between West Africa and sub-Antarctic feeding areas. Potential overlap of whale habitat with human activities was the highest in exclusive economic zones close to shore, particularly in areas used by both individual whales and the hydrocarbon industry. Whales potentially overlapped with different activities during each stage of their migration, which makes it difficult to implement mitigation measures over their entire range. Our results and existing population-level data may inform delimitation of populations and actions to mitigate potential threats to whales as part of local, regional, and international management of highly migratory marine species.


Asunto(s)
Migración Animal , Conservación de los Recursos Naturales , Yubarta/fisiología , Animales , Océano Atlántico , Conducta Alimentaria , Femenino , Explotaciones Pesqueras , Gabón , Masculino , Tecnología de Sensores Remotos
9.
Conserv Biol ; 27(5): 958-67, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23869527

RESUMEN

Seasoned conservation researchers often struggle to bridge the research-implementation gap and promote the translation of their work into meaningful conservation actions. Graduate students face the same problems and must contend with obstacles such as limited opportunities for relevant interdisciplinary training and a lack of institutional support for application of research results. However, students also have a crucial set of opportunities (e.g., access to academic resources outside their degree programs and opportunities to design research projects promoting collaboration with stakeholders) at their disposal to address these problems. On the basis of results of breakout discussions at a symposium on the human dimensions of the ocean, a review of the literature, and our own experiences, we devised recommendations on how graduate students can create resources within their academic institutions, institutionalize resources, and engage with stakeholders to promote real-world conservation outcomes. Within their academic institutions, graduate students should foster links to practitioners and promote knowledge and skill sharing among students. To institutionalize resources, students should cultivate student leaders and faculty sponsors, systematically document their program activities, and engage in strategic planning to promote the sustainability of their efforts. While conducting research, students should create connections to and engage actively with stakeholders in their relevant study areas and disseminate research results both to stakeholders and the broader public. Our recommendations can serve as a template for graduate students wishing to bridge the research-implementation gap, both during their current studies and in their future careers as conservation researchers and practitioners.


Asunto(s)
Conservación de los Recursos Naturales , Estudiantes , Docentes , Liderazgo , Investigación , Universidades
10.
Ecol Evol ; 10(12): 5759-5784, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32607189

RESUMEN

Species distribution models (SDMs) are important management tools for highly mobile marine species because they provide spatially and temporally explicit information on animal distribution. Two prevalent modeling frameworks used to develop SDMs for marine species are generalized additive models (GAMs) and boosted regression trees (BRTs), but comparative studies have rarely been conducted; most rely on presence-only data; and few have explored how features such as species distribution characteristics affect model performance. Since the majority of marine species BRTs have been used to predict habitat suitability, we first compared BRTs to GAMs that used presence/absence as the response variable. We then compared results from these habitat suitability models to GAMs that predict species density (animals per km2) because density models built with a subset of the data used here have previously received extensive validation. We compared both the explanatory power (i.e., model goodness of fit) and predictive power (i.e., performance on a novel dataset) of the GAMs and BRTs for a taxonomically diverse suite of cetacean species using a robust set of systematic survey data (1991-2014) within the California Current Ecosystem. Both BRTs and GAMs were successful at describing overall distribution patterns throughout the study area for the majority of species considered, but when predicting on novel data, the density GAMs exhibited substantially greater predictive power than both the presence/absence GAMs and BRTs, likely due to both the different response variables and fitting algorithms. Our results provide an improved understanding of some of the strengths and limitations of models developed using these two methods. These results can be used by modelers developing SDMs and resource managers tasked with the spatial management of marine species to determine the best modeling technique for their question of interest.

11.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30879872

RESUMEN

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Ecosistema
12.
PLoS One ; 13(4): e0195760, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29668750

RESUMEN

Large marine protected areas (LMPAs) are increasingly being established and have a high profile in marine conservation. LMPAs are expected to achieve multiple objectives, and because of their size are postulated to avoid trade-offs that are common in smaller MPAs. However, evaluations across multiple outcomes are lacking. We used a systematic approach to code several social and ecological outcomes of 12 LMPAs. We found evidence of three types of trade-offs: trade-offs between different ecological resources (supply trade-offs); trade-offs between ecological resource conditions and the well-being of resource users (supply-demand trade-offs); and trade-offs between the well-being outcomes of different resource users (demand trade-offs). We also found several divergent outcomes that were attributed to influences beyond the scope of the LMPA. We suggest that despite their size, trade-offs can develop in LMPAs and should be considered in planning and design. LMPAs may improve their performance across multiple social and ecological objectives if integrated with larger-scale conservation efforts.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Océanos y Mares , Biodiversidad , Ecología , Humanos
13.
Ecol Evol ; 8(5): 2788-2801, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29531695

RESUMEN

Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions (Zalophus californianus) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data (n = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool (<14°C), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.

14.
Sci Adv ; 4(5): eaar3001, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29854945

RESUMEN

Seafood is an essential source of protein for more than 3 billion people worldwide, yet bycatch of threatened species in capture fisheries remains a major impediment to fisheries sustainability. Management measures designed to reduce bycatch often result in significant economic losses and even fisheries closures. Static spatial management approaches can also be rendered ineffective by environmental variability and climate change, as productive habitats shift and introduce new interactions between human activities and protected species. We introduce a new multispecies and dynamic approach that uses daily satellite data to track ocean features and aligns scales of management, species movement, and fisheries. To accomplish this, we create species distribution models for one target species and three bycatch-sensitive species using both satellite telemetry and fisheries observer data. We then integrate species-specific probabilities of occurrence into a single predictive surface, weighing the contribution of each species by management concern. We find that dynamic closures could be 2 to 10 times smaller than existing static closures while still providing adequate protection of endangered nontarget species. Our results highlight the opportunity to implement near real-time management strategies that would both support economically viable fisheries and meet mandated conservation objectives in the face of changing ocean conditions. With recent advances in eco-informatics, dynamic management provides a new climate-ready approach to support sustainable fisheries.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Demografía , Ecosistema , Monitoreo del Ambiente , Modelos Teóricos
16.
18.
Mar Pollut Bull ; 78(1-2): 56-62, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24315702

RESUMEN

Ingestion of anthropogenic debris represents an important threat to marine turtle populations. Information has been limited to inventories of debris ingested and its consequences, but why ingestion occurs and the conditions that enable it are less understood. Here we report on the occurrence of plastic ingestion in young green turtles (Chelonia mydas) inhabiting the Río de la Plata (SW Atlantic). This estuarine area is characterized by a frontal system that accumulates anthropogenic debris. We explored exposure of green turtles to plastic and its ingestion via debris distribution, habitat use and digestive tract examination. Results indicated that there is considerable overlap of frontal accumulated plastic and core foraging areas of the animals. Exposure results in ingestion, as shown by the high frequency of plastic found in the digestive tracts. The Río de la Plata estuarine front is an area of conservation concern for young green turtles.


Asunto(s)
Monitoreo del Ambiente , Plásticos/metabolismo , Tortugas/metabolismo , Contaminantes del Agua/metabolismo , Animales , Océano Atlántico , Contenido Digestivo/química
19.
Mar Pollut Bull ; 77(1-2): 7-10, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24246654

RESUMEN

On the 20th anniversary of the Convention on Biological Diversity, a network of very large marine protected areas (the Big Ocean network) has emerged as a key strategy in the move to arrest marine decline and conserve some of the last remaining relatively undisturbed marine areas on the globe. Here we outline the ecological, economic and policy benefits of very large-scale MPAs and show their disproportionate value to global marine conservation targets. In particular we point out that very large-scale MPAs are a critical component of reaching the Aichi targets of protecting 10% of global marine habitats by 2020, because in addition to encompassing entire ecosystems, they will bring forward the expected date of achievement by nearly three decades (2025 as opposed to 2054). While the need for small MPAs remains critical, large MPAs will complement and enhance these conservation efforts. Big Ocean sites currently contain more than 80% of managed area in the sea, and provide our best hope for arresting the global decline in marine biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Animales , Océanos y Mares
20.
Nat Commun ; 4: 2688, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24162104

RESUMEN

Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.


Asunto(s)
Migración Animal , Actividades Humanas , Dinámica Poblacional , Conducta Predatoria/fisiología , Animales , Aves , California , Conservación de los Recursos Naturales , Ecología , Ecosistema , Geografía , Humanos , Biología Marina , Océano Pacífico , Leones Marinos , Phocidae , Especificidad de la Especie , Tortugas , Ballenas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA