Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 32(12): 2055-2067, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36917259

RESUMEN

Barth syndrome is an X-linked disorder caused by loss-of-function mutations in Tafazzin (TAZ), an acyltransferase that catalyzes remodeling of cardiolipin, a signature phospholipid of the inner mitochondrial membrane. Patients develop cardiac and skeletal muscle weakness, growth delay and neutropenia, although phenotypic expression varies considerably between patients. Taz knockout mice recapitulate many of the hallmark features of the disease. We used mouse genetics to test the hypothesis that genetic modifiers alter the phenotypic manifestations of Taz inactivation. We crossed TazKO/X females in the C57BL6/J inbred strain to males from eight inbred strains and evaluated the phenotypes of first-generation (F1) TazKO/Y progeny, compared to TazWT/Y littermates. We observed that genetic background strongly impacted phenotypic expression. C57BL6/J and CAST/EiJ[F1] TazKO/Y mice developed severe cardiomyopathy, whereas A/J[F1] TazKO/Y mice had normal heart function. C57BL6/J and WSB/EiJ[F1] TazKO/Y mice had severely reduced treadmill endurance, whereas endurance was normal in A/J[F1] and CAST/EiJ[F1] TazKO/Y mice. In all genetic backgrounds, cardiolipin showed similar abnormalities in knockout mice, and transcriptomic and metabolomic investigations identified signatures of mitochondrial uncoupling and activation of the integrated stress response. TazKO/Y cardiac mitochondria were small, clustered and had reduced cristae density in knockouts in severely affected genetic backgrounds but were relatively preserved in the permissive A/J[F1] strain. Gene expression and mitophagy measurements were consistent with reduced mitophagy in knockout mice in genetic backgrounds intolerant of Taz mutation. Our data demonstrate that genetic modifiers powerfully modulate phenotypic expression of Taz loss-of-function and act downstream of cardiolipin, possibly by altering mitochondrial quality control.


Asunto(s)
Síndrome de Barth , Masculino , Femenino , Animales , Ratones , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Factores de Transcripción/metabolismo , Modelos Animales de Enfermedad , Aciltransferasas/genética , Ratones Noqueados , Fenotipo
2.
Circ Res ; 131(11): e152-e168, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36263775

RESUMEN

BACKGROUND: The pioneer transcription factor (TF) GATA4 (GATA Binding Protein 4) is expressed in multiple cardiovascular lineages and is essential for heart development. GATA4 lineage-specific occupancy in the developing heart underlies its lineage specific activities. Here, we characterized GATA4 chromatin occupancy in cardiomyocyte and endocardial lineages, dissected mechanisms that control lineage specific occupancy, and analyzed GATA4 regulation of endocardial gene expression. METHODS: We mapped GATA4 chromatin occupancy in cardiomyocyte and endocardial cells of embryonic day 12.5 (E12.5) mouse heart using lineage specific, Cre-activated biotinylation of GATA4. Regulation of GATA4 pioneering activity was studied in cell lines stably overexpressing GATA4. GATA4 regulation of endocardial gene expression was analyzed using single cell RNA sequencing and luciferase reporter assays. RESULTS: Cardiomyocyte-selective and endothelial-selective GATA4 occupied genomic regions had features of lineage specific enhancers. Footprints within cardiomyocyte- and endothelial-selective GATA4 regions were enriched for NKX2-5 (NK2 homeobox 5) and ETS1 (ETS Proto-Oncogene 1) motifs, respectively, and both of these TFs interacted with GATA4 in co-immunoprecipitation assays. In stable NIH3T3 cell lines expressing GATA4 with or without NKX2-5 or ETS1, the partner TFs re-directed GATA4 pioneer binding and augmented its ability to open previously inaccessible regions, with ETS1 displaying greater potency as a pioneer partner than NKX2-5. Single-cell RNA sequencing of embryonic hearts with endothelial cell-specific Gata4 inactivation identified Gata4-regulated endocardial genes, which were adjacent to GATA4-bound, endothelial regions enriched for both GATA4 and ETS1 motifs. In reporter assays, GATA4 and ETS1 cooperatively stimulated endothelial cell enhancer activity. CONCLUSIONS: Lineage selective non-pioneer TFs NKX2-5 and ETS1 guide the activity of pioneer TF GATA4 to bind and open chromatin and create active enhancers and mechanistically link ETS1 interaction to GATA4 regulation of endocardial development.


Asunto(s)
Endocardio , Factor de Transcripción GATA4 , Proteína Proto-Oncogénica c-ets-1 , Animales , Ratones , Cromatina/metabolismo , Endocardio/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/metabolismo , Células 3T3 NIH , Proteína Proto-Oncogénica c-ets-1/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33361330

RESUMEN

The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.


Asunto(s)
Actinina/genética , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Actinina/metabolismo , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica/genética , Ratones , Mitocondrias/metabolismo , Morfogénesis , Mutación , Miocitos Cardíacos/patología , Sarcómeros/patología , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
4.
Microcirculation ; 29(3): e12756, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35289024

RESUMEN

OBJECTIVE: The myogenic response sets the foundation for blood flow control. Recent findings suggest a role for G protein-coupled receptors (GPCR) and signaling pathways tied to the generation of reactive oxygen species (ROS). In this regard, this study ascertained the impact of NADPH oxidase (Nox) on myogenic tone in rat cerebral resistance arteries. METHODS: The study employed real-time qPCR (RT-qPCR), pressure myography, and immunohistochemistry. RESULTS: Gq blockade abolished myogenic tone in rat cerebral arteries, linking GPCR to mechanosensation. Subsequent work revealed that general (TEMPOL) and mitochondrial specific (MitoTEMPO) ROS scavengers had little impact on myogenic tone, whereas apocynin, a broad spectrum Nox inhibitor, initiated transient dilation. RT-qPCR revealed Nox1 and Nox2 mRNA expression in smooth muscle cells. Pressure myography defined Nox1 rather than Nox2 is facilitating myogenic tone. We rationalized that Nox1-generated ROS was initiating this response by impairing the ability of the CaV 3.2 channel to elicit negative feedback via BKCa . This hypothesis was confirmed in functional experiments. The proximity ligation assay further revealed that Nox1 and CaV 3.2 colocalize within 40 nm of one another. CONCLUSIONS: Our data highlight that vascular pressurization augments Nox1 activity and ensuing ROS production facilitates myogenic tone by limiting Ca2+ influx via CaV 3.2.


Asunto(s)
Músculo Liso Vascular , NADPH Oxidasas , Animales , Arterias Cerebrales/metabolismo , Músculo Liso Vascular/fisiología , Miografía , Ratas , Especies Reactivas de Oxígeno/metabolismo
5.
J Physiol ; 595(4): 1111-1126, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27805790

RESUMEN

KEY POINTS: Distinct Ca2+ channels work in a coordinated manner to grade Ca2+ spark/spontaneous transient outward currents (STOCs) in rat cerebral arteries. The relative contribution of each Ca2+ channel to Ca2+ spark/STOC production depends upon their biophysical properties and the resting membrane potential of smooth muscle. Na+ /Ca2+ exchanger, but not TRP channels, can also facilitate STOC production. ABSTRACT: Ca2+ sparks are generated in a voltage-dependent manner to initiate spontaneous transient outward currents (STOCs), events that moderate arterial constriction. In this study, we defined the mechanisms by which membrane depolarization increases Ca2+ sparks and subsequent STOC production. Using perforated patch clamp electrophysiology and rat cerebral arterial myocytes, we monitored STOCs in the presence and absence of agents that modulate Ca2+ entry. Beginning with CaV 3.2 channel inhibition, Ni2+ was shown to decrease STOC frequency in cells held at hyperpolarized (-40 mV) but not depolarized (-20 mV) voltages. In contrast, nifedipine, a CaV 1.2 inhibitor, markedly suppressed STOC frequency at -20 mV but not -40 mV. These findings aligned with the voltage-dependent profiles of L- and T-type Ca2+ channels. Furthermore, computational and experimental observations illustrated that Ca2+ spark production is intimately tied to the activity of both conductances. Intriguingly, this study observed residual STOC production at depolarized voltages that was independent of CaV 1.2 and CaV 3.2. This residual component was insensitive to TRPV4 channel modulation and was abolished by Na+ /Ca2+ exchanger blockade. In summary, our work highlights that the voltage-dependent triggering of Ca2+ sparks/STOCs is not tied to a single conductance but rather reflects an interplay among multiple Ca2+ permeable pores with distinct electrophysiological properties. This integrated orchestration enables smooth muscle to grade Ca2+ spark/STOC production and thus precisely tune negative electrical feedback.


Asunto(s)
Señalización del Calcio , Arterias Cerebrales/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Canales de Calcio/metabolismo , Células Cultivadas , Arterias Cerebrales/citología , Arterias Cerebrales/fisiología , Femenino , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Ratas , Ratas Sprague-Dawley , Intercambiador de Sodio-Calcio/metabolismo , Canales Catiónicos TRPV/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 35(12): 2571-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26494230

RESUMEN

OBJECTIVE: The myogenic response is central to blood flow regulation in the brain. Its induction is tied to elevated cytosolic [Ca(2+)], a response primarily driven by voltage-gated Ca(2+) channels and secondarily by Ca(2+) wave production. Although the signaling events leading to the former are well studied, those driving Ca(2+) waves remain uncertain. APPROACH AND RESULTS: We postulated that αvß3 integrin signaling is integral to the generation of pressure-induced Ca(2+) waves and cerebral arterial tone. This hypothesis was tested in rat cerebral arteries using the synergistic strengths of pressure myography, rapid Ca(2+) imaging, and Western blot analysis. GRGDSP, a peptide that preferentially blocks αvß3 integrin, attenuated myogenic tone, indicating the modest role for sarcoplasmic reticulum Ca(2+) release in myogenic tone generation. The RGD peptide was subsequently shown to impair Ca(2+) wave generation and myosin light chain 20 (MLC20) phosphorylation, the latter of which was attributed to the modulation of MLC kinase and MLC phosphatase via MYPT1-T855 phosphorylation. Subsequent experiments revealed that elevated pressure enhanced phospholipase Cγ1 phosphorylation in an RGD-dependent manner and that phospholipase C inhibition attenuated Ca(2+) wave generation. Direct inhibition of inositol 1, 4, 5-triphosphate receptors also impaired Ca(2+) wave generation, myogenic tone, and MLC20 phosphorylation, partly through the T-855 phosphorylation site of MYPT1. CONCLUSIONS: Our investigation reveals a hitherto unknown role for αvß3 integrin as a cerebral arterial pressure sensor. The membrane receptor facilitates Ca(2+) wave generation through a signaling cascade, involving phospholipase Cγ1, inositol 1,3,4 triphosphate production, and inositol 1, 4, 5-triphosphate receptor activation. These discrete asynchronous Ca(2+) events facilitate MLC20 phosphorylation and, in part, myogenic tone by influencing both MLC kinase and MLC phosphatase activity.


Asunto(s)
Señalización del Calcio , Arterias Cerebrales/metabolismo , Circulación Cerebrovascular , Integrina alfaVbeta3/metabolismo , Vasoconstricción , Animales , Presión Arterial , Western Blotting , Señalización del Calcio/efectos de los fármacos , Arterias Cerebrales/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Femenino , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Mecanotransducción Celular , Miografía , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Oligopéptidos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Fosfolipasa C gamma/antagonistas & inhibidores , Fosfolipasa C gamma/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Ratas Sprague-Dawley , Retículo Sarcoplasmático , Vasoconstricción/efectos de los fármacos
7.
Nat Genet ; 56(3): 420-430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378865

RESUMEN

Rare coding mutations cause ∼45% of congenital heart disease (CHD). Noncoding mutations that perturb cis-regulatory elements (CREs) likely contribute to the remaining cases, but their identification has been problematic. Using a lentiviral massively parallel reporter assay (lentiMPRA) in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we functionally evaluated 6,590 noncoding de novo variants (ncDNVs) prioritized from the whole-genome sequencing of 750 CHD trios. A total of 403 ncDNVs substantially affected cardiac CRE activity. A majority increased enhancer activity, often at regions with undetectable reference sequence activity. Of ten DNVs tested by introduction into their native genomic context, four altered the expression of neighboring genes and iPSC-CM transcriptional state. To prioritize future DNVs for functional testing, we used the MPRA data to develop a regression model, EpiCard. Analysis of an independent CHD cohort by EpiCard found enrichment of DNVs. Together, we developed a scalable system to measure the effect of ncDNVs on CRE activity and deployed it to systematically assess the contribution of ncDNVs to CHD.


Asunto(s)
Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Cardiopatías Congénitas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Mutación , Miocitos Cardíacos
8.
Cardiovasc Res ; 119(1): 221-235, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35576474

RESUMEN

AIMS: Calcium-handling capacity is a major gauge of cardiomyocyte maturity. Ryanodine receptor 2 (RYR2) is the pre-dominant calcium channel that releases calcium from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) to activate cardiomyocyte contraction. Although RYR2 was previously implied as a key regulator of cardiomyocyte maturation, the mechanisms remain unclear. The aim of this study is to solve this problem. METHODS AND RESULTS: We performed Cas9/AAV9-mediated somatic mutagenesis to knockout RYR2 specifically in cardiomyocytes in mice. We conducted a genetic mosaic analysis to dissect the cell-autonomous function of RYR2 during cardiomyocyte maturation. We found that RYR2 depletion triggered ultrastructural and transcriptomic defects relevant to cardiomyocyte maturation. These phenotypes were associated with the drastic activation of ER stress pathways. The ER stress alleviator tauroursodeoxycholic acid partially rescued the defects in RYR2-depleted cardiomyocytes. Overexpression of ATF4, a key ER stress transcription factor, recapitulated defects in RYR2-depleted cells. Integrative analysis of RNA-Seq and bioChIP-Seq data revealed that protein biosynthesis-related genes are the major direct downstream targets of ATF4. CONCLUSION: RYR2-regulated ER homeostasis is essential for cardiomyocyte maturation. Severe ER stress perturbs cardiomyocyte maturation primarily through ATF4 activation. The major downstream effector genes of ATF4 are related to protein biosynthesis.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Respuesta de Proteína Desplegada , Señalización del Calcio
9.
Dev Cell ; 58(10): 898-914.e7, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37071996

RESUMEN

Cardiomyocyte differentiation continues throughout murine gestation and into the postnatal period, driven by temporally regulated expression changes in the transcriptome. The mechanisms that regulate these developmental changes remain incompletely defined. Here, we used cardiomyocyte-specific ChIP-seq of the activate enhancer marker P300 to identify 54,920 cardiomyocyte enhancers at seven stages of murine heart development. These data were matched to cardiomyocyte gene expression profiles at the same stages and to Hi-C and H3K27ac HiChIP chromatin conformation data at fetal, neonatal, and adult stages. Regions with dynamic P300 occupancy exhibited developmentally regulated enhancer activity, as measured by massively parallel reporter assays in cardiomyocytes in vivo, and identified key transcription factor-binding motifs. These dynamic enhancers interacted with temporal changes of the 3D genome architecture to specify developmentally regulated cardiomyocyte gene expressions. Our work provides a 3D genome-mediated enhancer activity landscape of murine cardiomyocyte development.


Asunto(s)
Elementos de Facilitación Genéticos , Miocitos Cardíacos , Animales , Ratones , Cromatina , Regiones Promotoras Genéticas , Transcriptoma
10.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106146

RESUMEN

Z-lines are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-line-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-line proteome in vivo. We found palmdelphin (PALMD) as a novel Z-line-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed transverse tubules (T-tubules) and their association with sarcoplasmic reticulum, which formed the Z-line-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with disrupted localization of T-tubule markers caveolin-3 (CAV3) and junctophilin-2 (JPH2) and the reduction of nexilin (NEXN) protein, a crucial Z-line-associated protein that is essential for both Z-line and JMC structures and functions. PALMD was found to interact with NEXN and enhance its protein stability while the Nexn mRNA level was not affected. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis. Highlights: In vivo proximity proteomics uncover novel Z-line components that are undetected in in vitro proximity proteomics in cardiomyocytes.PALMD is a novel Z-line-associated protein that is dispensable for baseline cardiomyocyte function in vivo.PALMD mitigates cardiac dysfunction and myocardial injury after repeated isoproterenol insults.PALMD stabilizes NEXN, an essential Z-line-associated regulator of the junctional membrane complex and cardiac systolic function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA